| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sniota | GIF version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota | ⊢ (∃!xφ → {x ∣ φ} = {(℩xφ)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2214 | . . 3 ⊢ Ⅎx∃!xφ | |
| 2 | iota1 4354 | . . . . 5 ⊢ (∃!xφ → (φ ↔ (℩xφ) = x)) | |
| 3 | eqcom 2355 | . . . . 5 ⊢ ((℩xφ) = x ↔ x = (℩xφ)) | |
| 4 | 2, 3 | syl6bb 252 | . . . 4 ⊢ (∃!xφ → (φ ↔ x = (℩xφ))) |
| 5 | abid 2341 | . . . 4 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
| 6 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
| 7 | 6 | elsnc 3757 | . . . 4 ⊢ (x ∈ {(℩xφ)} ↔ x = (℩xφ)) |
| 8 | 4, 5, 7 | 3bitr4g 279 | . . 3 ⊢ (∃!xφ → (x ∈ {x ∣ φ} ↔ x ∈ {(℩xφ)})) |
| 9 | 1, 8 | alrimi 1765 | . 2 ⊢ (∃!xφ → ∀x(x ∈ {x ∣ φ} ↔ x ∈ {(℩xφ)})) |
| 10 | nfab1 2492 | . . 3 ⊢ Ⅎx{x ∣ φ} | |
| 11 | nfiota1 4342 | . . . 4 ⊢ Ⅎx(℩xφ) | |
| 12 | 11 | nfsn 3785 | . . 3 ⊢ Ⅎx{(℩xφ)} |
| 13 | 10, 12 | cleqf 2514 | . 2 ⊢ ({x ∣ φ} = {(℩xφ)} ↔ ∀x(x ∈ {x ∣ φ} ↔ x ∈ {(℩xφ)})) |
| 14 | 9, 13 | sylibr 203 | 1 ⊢ (∃!xφ → {x ∣ φ} = {(℩xφ)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 {csn 3738 ℩cio 4338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |