New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difab | GIF version |
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difab | ⊢ ({x ∣ φ} ∖ {x ∣ ψ}) = {x ∣ (φ ∧ ¬ ψ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2340 | . . 3 ⊢ (y ∈ {x ∣ (φ ∧ ¬ ψ)} ↔ [y / x](φ ∧ ¬ ψ)) | |
2 | sban 2069 | . . 3 ⊢ ([y / x](φ ∧ ¬ ψ) ↔ ([y / x]φ ∧ [y / x] ¬ ψ)) | |
3 | df-clab 2340 | . . . . 5 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
4 | 3 | bicomi 193 | . . . 4 ⊢ ([y / x]φ ↔ y ∈ {x ∣ φ}) |
5 | sbn 2062 | . . . . 5 ⊢ ([y / x] ¬ ψ ↔ ¬ [y / x]ψ) | |
6 | df-clab 2340 | . . . . 5 ⊢ (y ∈ {x ∣ ψ} ↔ [y / x]ψ) | |
7 | 5, 6 | xchbinxr 302 | . . . 4 ⊢ ([y / x] ¬ ψ ↔ ¬ y ∈ {x ∣ ψ}) |
8 | 4, 7 | anbi12i 678 | . . 3 ⊢ (([y / x]φ ∧ [y / x] ¬ ψ) ↔ (y ∈ {x ∣ φ} ∧ ¬ y ∈ {x ∣ ψ})) |
9 | 1, 2, 8 | 3bitrri 263 | . 2 ⊢ ((y ∈ {x ∣ φ} ∧ ¬ y ∈ {x ∣ ψ}) ↔ y ∈ {x ∣ (φ ∧ ¬ ψ)}) |
10 | 9 | difeqri 3388 | 1 ⊢ ({x ∣ φ} ∖ {x ∣ ψ}) = {x ∣ (φ ∧ ¬ ψ)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 ∖ cdif 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
This theorem is referenced by: notab 3526 difrab 3530 notrab 3533 |
Copyright terms: Public domain | W3C validator |