New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnoprabg | GIF version |
Description: Functionality and domain of an operation class abstraction. (Contributed by set.mm contributors, 28-Aug-2007.) |
Ref | Expression |
---|---|
fnoprabg | ⊢ (∀x∀y(φ → ∃!zψ) → {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} Fn {〈x, y〉 ∣ φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2244 | . . . . . 6 ⊢ (∃!zψ → ∃*zψ) | |
2 | 1 | imim2i 13 | . . . . 5 ⊢ ((φ → ∃!zψ) → (φ → ∃*zψ)) |
3 | moanimv 2262 | . . . . 5 ⊢ (∃*z(φ ∧ ψ) ↔ (φ → ∃*zψ)) | |
4 | 2, 3 | sylibr 203 | . . . 4 ⊢ ((φ → ∃!zψ) → ∃*z(φ ∧ ψ)) |
5 | 4 | 2alimi 1560 | . . 3 ⊢ (∀x∀y(φ → ∃!zψ) → ∀x∀y∃*z(φ ∧ ψ)) |
6 | funoprabg 5584 | . . 3 ⊢ (∀x∀y∃*z(φ ∧ ψ) → Fun {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)}) | |
7 | 5, 6 | syl 15 | . 2 ⊢ (∀x∀y(φ → ∃!zψ) → Fun {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)}) |
8 | dmoprab 5575 | . . 3 ⊢ dom {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} = {〈x, y〉 ∣ ∃z(φ ∧ ψ)} | |
9 | nfa1 1788 | . . . 4 ⊢ Ⅎx∀x∀y(φ → ∃!zψ) | |
10 | nfa2 1855 | . . . 4 ⊢ Ⅎy∀x∀y(φ → ∃!zψ) | |
11 | simpl 443 | . . . . . . . 8 ⊢ ((φ ∧ ψ) → φ) | |
12 | 11 | exlimiv 1634 | . . . . . . 7 ⊢ (∃z(φ ∧ ψ) → φ) |
13 | euex 2227 | . . . . . . . . . 10 ⊢ (∃!zψ → ∃zψ) | |
14 | 13 | imim2i 13 | . . . . . . . . 9 ⊢ ((φ → ∃!zψ) → (φ → ∃zψ)) |
15 | 14 | ancld 536 | . . . . . . . 8 ⊢ ((φ → ∃!zψ) → (φ → (φ ∧ ∃zψ))) |
16 | 19.42v 1905 | . . . . . . . 8 ⊢ (∃z(φ ∧ ψ) ↔ (φ ∧ ∃zψ)) | |
17 | 15, 16 | syl6ibr 218 | . . . . . . 7 ⊢ ((φ → ∃!zψ) → (φ → ∃z(φ ∧ ψ))) |
18 | 12, 17 | impbid2 195 | . . . . . 6 ⊢ ((φ → ∃!zψ) → (∃z(φ ∧ ψ) ↔ φ)) |
19 | 18 | sps 1754 | . . . . 5 ⊢ (∀y(φ → ∃!zψ) → (∃z(φ ∧ ψ) ↔ φ)) |
20 | 19 | sps 1754 | . . . 4 ⊢ (∀x∀y(φ → ∃!zψ) → (∃z(φ ∧ ψ) ↔ φ)) |
21 | 9, 10, 20 | opabbid 4625 | . . 3 ⊢ (∀x∀y(φ → ∃!zψ) → {〈x, y〉 ∣ ∃z(φ ∧ ψ)} = {〈x, y〉 ∣ φ}) |
22 | 8, 21 | syl5eq 2397 | . 2 ⊢ (∀x∀y(φ → ∃!zψ) → dom {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} = {〈x, y〉 ∣ φ}) |
23 | df-fn 4791 | . 2 ⊢ ({〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} Fn {〈x, y〉 ∣ φ} ↔ (Fun {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} ∧ dom {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} = {〈x, y〉 ∣ φ})) | |
24 | 7, 22, 23 | sylanbrc 645 | 1 ⊢ (∀x∀y(φ → ∃!zψ) → {〈〈x, y〉, z〉 ∣ (φ ∧ ψ)} Fn {〈x, y〉 ∣ φ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃!weu 2204 ∃*wmo 2205 {copab 4623 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-oprab 5529 |
This theorem is referenced by: fnoprab 5587 ovg 5602 |
Copyright terms: Public domain | W3C validator |