New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > preqr1 | GIF version |
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
preqr1.1 | ⊢ A ∈ V |
preqr1.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
preqr1 | ⊢ ({A, C} = {B, C} → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.1 | . . . . 5 ⊢ A ∈ V | |
2 | 1 | prid1 3828 | . . . 4 ⊢ A ∈ {A, C} |
3 | eleq2 2414 | . . . 4 ⊢ ({A, C} = {B, C} → (A ∈ {A, C} ↔ A ∈ {B, C})) | |
4 | 2, 3 | mpbii 202 | . . 3 ⊢ ({A, C} = {B, C} → A ∈ {B, C}) |
5 | 1 | elpr 3752 | . . 3 ⊢ (A ∈ {B, C} ↔ (A = B ∨ A = C)) |
6 | 4, 5 | sylib 188 | . 2 ⊢ ({A, C} = {B, C} → (A = B ∨ A = C)) |
7 | preqr1.2 | . . . . 5 ⊢ B ∈ V | |
8 | 7 | prid1 3828 | . . . 4 ⊢ B ∈ {B, C} |
9 | eleq2 2414 | . . . 4 ⊢ ({A, C} = {B, C} → (B ∈ {A, C} ↔ B ∈ {B, C})) | |
10 | 8, 9 | mpbiri 224 | . . 3 ⊢ ({A, C} = {B, C} → B ∈ {A, C}) |
11 | 7 | elpr 3752 | . . 3 ⊢ (B ∈ {A, C} ↔ (B = A ∨ B = C)) |
12 | 10, 11 | sylib 188 | . 2 ⊢ ({A, C} = {B, C} → (B = A ∨ B = C)) |
13 | eqcom 2355 | . 2 ⊢ (A = B ↔ B = A) | |
14 | eqeq2 2362 | . 2 ⊢ (A = C → (B = A ↔ B = C)) | |
15 | 6, 12, 13, 14 | oplem1 930 | 1 ⊢ ({A, C} = {B, C} → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 |
This theorem is referenced by: preqr2 4126 |
Copyright terms: Public domain | W3C validator |