New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > qdassr | GIF version |
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
qdassr | ⊢ ({A, B} ∪ {C, D}) = ({A} ∪ {B, C, D}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 3421 | . 2 ⊢ (({A} ∪ {B}) ∪ {C, D}) = ({A} ∪ ({B} ∪ {C, D})) | |
2 | df-pr 3743 | . . 3 ⊢ {A, B} = ({A} ∪ {B}) | |
3 | 2 | uneq1i 3415 | . 2 ⊢ ({A, B} ∪ {C, D}) = (({A} ∪ {B}) ∪ {C, D}) |
4 | tpass 3819 | . . 3 ⊢ {B, C, D} = ({B} ∪ {C, D}) | |
5 | 4 | uneq2i 3416 | . 2 ⊢ ({A} ∪ {B, C, D}) = ({A} ∪ ({B} ∪ {C, D})) |
6 | 1, 3, 5 | 3eqtr4i 2383 | 1 ⊢ ({A, B} ∪ {C, D}) = ({A} ∪ {B, C, D}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪ cun 3208 {csn 3738 {cpr 3739 {ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |