New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  qdassr GIF version

Theorem qdassr 3820
 Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr ({A, B} ∪ {C, D}) = ({A} ∪ {B, C, D})

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3420 . 2 (({A} ∪ {B}) ∪ {C, D}) = ({A} ∪ ({B} ∪ {C, D}))
2 df-pr 3742 . . 3 {A, B} = ({A} ∪ {B})
32uneq1i 3414 . 2 ({A, B} ∪ {C, D}) = (({A} ∪ {B}) ∪ {C, D})
4 tpass 3818 . . 3 {B, C, D} = ({B} ∪ {C, D})
54uneq2i 3415 . 2 ({A} ∪ {B, C, D}) = ({A} ∪ ({B} ∪ {C, D}))
61, 3, 53eqtr4i 2383 1 ({A, B} ∪ {C, D}) = ({A} ∪ {B, C, D})
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ∪ cun 3207  {csn 3737  {cpr 3738  {ctp 3739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-tp 3743 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator