New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uneq2i | GIF version |
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
uneq2i | ⊢ (C ∪ A) = (C ∪ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ A = B | |
2 | uneq2 3413 | . 2 ⊢ (A = B → (C ∪ A) = (C ∪ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∪ A) = (C ∪ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: un4 3424 unundir 3426 difun2 3630 difdifdir 3638 dfif5 3675 qdass 3820 qdassr 3821 ssunpr 3869 iununi 4051 pw1eqadj 4333 nncaddccl 4420 ltfintrilem1 4466 ncfinraise 4482 tfinsuc 4499 nnadjoin 4521 sfindbl 4531 tfinnn 4535 fvsnun1 5448 sbthlem1 6204 leconnnc 6219 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |