New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.9rzv | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.9rzv | ⊢ (A ≠ ∅ → (φ ↔ ∃x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.3rzv 3644 | . . . 4 ⊢ (A ≠ ∅ → (¬ φ ↔ ∀x ∈ A ¬ φ)) | |
2 | 1 | bicomd 192 | . . 3 ⊢ (A ≠ ∅ → (∀x ∈ A ¬ φ ↔ ¬ φ)) |
3 | 2 | con2bid 319 | . 2 ⊢ (A ≠ ∅ → (φ ↔ ¬ ∀x ∈ A ¬ φ)) |
4 | dfrex2 2628 | . 2 ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) | |
5 | 3, 4 | syl6bbr 254 | 1 ⊢ (A ≠ ∅ → (φ ↔ ∃x ∈ A φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ≠ wne 2517 ∀wral 2615 ∃wrex 2616 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: r19.45zv 3648 r19.36zv 3651 iunconst 3978 fconstfv 5457 |
Copyright terms: Public domain | W3C validator |