New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabbi2dva | GIF version |
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
Ref | Expression |
---|---|
rabbi2dva.1 | ⊢ ((φ ∧ x ∈ A) → (x ∈ B ↔ ψ)) |
Ref | Expression |
---|---|
rabbi2dva | ⊢ (φ → (A ∩ B) = {x ∈ A ∣ ψ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . . 4 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
2 | 1 | abbi2i 2465 | . . 3 ⊢ (A ∩ B) = {x ∣ (x ∈ A ∧ x ∈ B)} |
3 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ x ∈ B} = {x ∣ (x ∈ A ∧ x ∈ B)} | |
4 | 2, 3 | eqtr4i 2376 | . 2 ⊢ (A ∩ B) = {x ∈ A ∣ x ∈ B} |
5 | rabbi2dva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → (x ∈ B ↔ ψ)) | |
6 | 5 | rabbidva 2851 | . 2 ⊢ (φ → {x ∈ A ∣ x ∈ B} = {x ∈ A ∣ ψ}) |
7 | 4, 6 | syl5eq 2397 | 1 ⊢ (φ → (A ∩ B) = {x ∈ A ∣ ψ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |