New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralcom | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀y ∈ B ∀x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2489 | . 2 ⊢ ℲyA | |
2 | nfcv 2489 | . 2 ⊢ ℲxB | |
3 | 1, 2 | ralcomf 2769 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀y ∈ B ∀x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 |
This theorem is referenced by: ralcom4 2877 ssint 3942 iinrab2 4029 fununi 5160 isocnv2 5492 |
Copyright terms: Public domain | W3C validator |