NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralab GIF version

Theorem ralab 2998
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (y = x → (φψ))
Assertion
Ref Expression
ralab (x {y φ}χx(ψχ))
Distinct variable groups:   x,y   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x)   χ(x,y)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 2620 . 2 (x {y φ}χx(x {y φ} → χ))
2 vex 2863 . . . . 5 x V
3 ralab.1 . . . . 5 (y = x → (φψ))
42, 3elab 2986 . . . 4 (x {y φ} ↔ ψ)
54imbi1i 315 . . 3 ((x {y φ} → χ) ↔ (ψχ))
65albii 1566 . 2 (x(x {y φ} → χ) ↔ x(ψχ))
71, 6bitri 240 1 (x {y φ}χx(ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   wcel 1710  {cab 2339  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862
This theorem is referenced by:  nnadjoinpw  4522  funcnvuni  5162  frds  5936
  Copyright terms: Public domain W3C validator