| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralrimivva | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralrimivva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → ψ) |
| Ref | Expression |
|---|---|
| ralrimivva | ⊢ (φ → ∀x ∈ A ∀y ∈ B ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivva.1 | . . 3 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → ψ) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → ((x ∈ A ∧ y ∈ B) → ψ)) |
| 3 | 2 | ralrimivv 2706 | 1 ⊢ (φ → ∀x ∈ A ∀y ∈ B ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: nnpw1ex 4485 isocnv 5492 isotr 5496 f1oiso 5500 caovcld 5623 caovcomg 5625 antird 5929 iserd 5943 ncspw1eu 6160 |
| Copyright terms: Public domain | W3C validator |