NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralrimivva GIF version

Theorem ralrimivva 2707
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
ralrimivva.1 ((φ (x A y B)) → ψ)
Assertion
Ref Expression
ralrimivva (φx A y B ψ)
Distinct variable groups:   φ,x,y   y,A
Allowed substitution hints:   ψ(x,y)   A(x)   B(x,y)

Proof of Theorem ralrimivva
StepHypRef Expression
1 ralrimivva.1 . . 3 ((φ (x A y B)) → ψ)
21ex 423 . 2 (φ → ((x A y B) → ψ))
32ralrimivv 2706 1 (φx A y B ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  nnpw1ex  4485  isocnv  5492  isotr  5496  f1oiso  5500  caovcld  5623  caovcomg  5625  antird  5929  iserd  5943  ncspw1eu  6160
  Copyright terms: Public domain W3C validator