NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iserd GIF version

Theorem iserd 5943
Description: A symmetric, transitive relationship is an equivalence relationship. (Contributed by SF, 22-Feb-2015.)
Hypotheses
Ref Expression
iserd.1 (φR V)
iserd.2 (φA W)
iserd.3 ((φ (x A y A) xRy) → yRx)
iserd.4 ((φ (x A y A z A) (xRy yRz)) → xRz)
Assertion
Ref Expression
iserd (φR Er A)
Distinct variable groups:   x,A,y,z   φ,x,y,z   x,R,y,z
Allowed substitution hints:   V(x,y,z)   W(x,y,z)

Proof of Theorem iserd
Dummy variables a r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserd.3 . . . . 5 ((φ (x A y A) xRy) → yRx)
213expia 1153 . . . 4 ((φ (x A y A)) → (xRyyRx))
32ralrimivva 2707 . . 3 (φx A y A (xRyyRx))
4 iserd.1 . . . 4 (φR V)
5 iserd.2 . . . 4 (φA W)
6 breq 4642 . . . . . . 7 (r = R → (xryxRy))
7 breq 4642 . . . . . . 7 (r = R → (yrxyRx))
86, 7imbi12d 311 . . . . . 6 (r = R → ((xryyrx) ↔ (xRyyRx)))
982ralbidv 2657 . . . . 5 (r = R → (x a y a (xryyrx) ↔ x a y a (xRyyRx)))
10 raleq 2808 . . . . . 6 (a = A → (y a (xRyyRx) ↔ y A (xRyyRx)))
1110raleqbi1dv 2816 . . . . 5 (a = A → (x a y a (xRyyRx) ↔ x A y A (xRyyRx)))
12 df-sym 5909 . . . . 5 Sym = {r, a x a y a (xryyrx)}
139, 11, 12brabg 4707 . . . 4 ((R V A W) → (R Sym Ax A y A (xRyyRx)))
144, 5, 13syl2anc 642 . . 3 (φ → (R Sym Ax A y A (xRyyRx)))
153, 14mpbird 223 . 2 (φR Sym A)
16 iserd.4 . . 3 ((φ (x A y A z A) (xRy yRz)) → xRz)
174, 5, 16trrd 5926 . 2 (φR Trans A)
18 ersymtr 5933 . 2 (R Er A ↔ (R Sym A R Trans A))
1915, 17, 18sylanbrc 645 1 (φR Er A)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  wral 2615   class class class wbr 4640   Trans ctrans 5889   Sym csym 5898   Er cer 5899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-trans 5900  df-sym 5909  df-er 5910
This theorem is referenced by:  ider  5944  eqer  5962  ener  6040
  Copyright terms: Public domain W3C validator