New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iserd | GIF version |
Description: A symmetric, transitive relationship is an equivalence relationship. (Contributed by SF, 22-Feb-2015.) |
Ref | Expression |
---|---|
iserd.1 | ⊢ (φ → R ∈ V) |
iserd.2 | ⊢ (φ → A ∈ W) |
iserd.3 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A) ∧ xRy) → yRx) |
iserd.4 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A ∧ z ∈ A) ∧ (xRy ∧ yRz)) → xRz) |
Ref | Expression |
---|---|
iserd | ⊢ (φ → R Er A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.3 | . . . . 5 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A) ∧ xRy) → yRx) | |
2 | 1 | 3expia 1153 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A)) → (xRy → yRx)) |
3 | 2 | ralrimivva 2707 | . . 3 ⊢ (φ → ∀x ∈ A ∀y ∈ A (xRy → yRx)) |
4 | iserd.1 | . . . 4 ⊢ (φ → R ∈ V) | |
5 | iserd.2 | . . . 4 ⊢ (φ → A ∈ W) | |
6 | breq 4642 | . . . . . . 7 ⊢ (r = R → (xry ↔ xRy)) | |
7 | breq 4642 | . . . . . . 7 ⊢ (r = R → (yrx ↔ yRx)) | |
8 | 6, 7 | imbi12d 311 | . . . . . 6 ⊢ (r = R → ((xry → yrx) ↔ (xRy → yRx))) |
9 | 8 | 2ralbidv 2657 | . . . . 5 ⊢ (r = R → (∀x ∈ a ∀y ∈ a (xry → yrx) ↔ ∀x ∈ a ∀y ∈ a (xRy → yRx))) |
10 | raleq 2808 | . . . . . 6 ⊢ (a = A → (∀y ∈ a (xRy → yRx) ↔ ∀y ∈ A (xRy → yRx))) | |
11 | 10 | raleqbi1dv 2816 | . . . . 5 ⊢ (a = A → (∀x ∈ a ∀y ∈ a (xRy → yRx) ↔ ∀x ∈ A ∀y ∈ A (xRy → yRx))) |
12 | df-sym 5909 | . . . . 5 ⊢ Sym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry → yrx)} | |
13 | 9, 11, 12 | brabg 4707 | . . . 4 ⊢ ((R ∈ V ∧ A ∈ W) → (R Sym A ↔ ∀x ∈ A ∀y ∈ A (xRy → yRx))) |
14 | 4, 5, 13 | syl2anc 642 | . . 3 ⊢ (φ → (R Sym A ↔ ∀x ∈ A ∀y ∈ A (xRy → yRx))) |
15 | 3, 14 | mpbird 223 | . 2 ⊢ (φ → R Sym A) |
16 | iserd.4 | . . 3 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A ∧ z ∈ A) ∧ (xRy ∧ yRz)) → xRz) | |
17 | 4, 5, 16 | trrd 5926 | . 2 ⊢ (φ → R Trans A) |
18 | ersymtr 5933 | . 2 ⊢ (R Er A ↔ (R Sym A ∧ R Trans A)) | |
19 | 15, 17, 18 | sylanbrc 645 | 1 ⊢ (φ → R Er A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2615 class class class wbr 4640 Trans ctrans 5889 Sym csym 5898 Er cer 5899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-trans 5900 df-sym 5909 df-er 5910 |
This theorem is referenced by: ider 5944 eqer 5962 ener 6040 |
Copyright terms: Public domain | W3C validator |