NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  resss GIF version

Theorem resss 4989
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by set.mm contributors, 2-Aug-1994.)
Assertion
Ref Expression
resss (A B) A

Proof of Theorem resss
StepHypRef Expression
1 df-res 4789 . 2 (A B) = (A ∩ (B × V))
2 inss1 3476 . 2 (A ∩ (B × V)) A
31, 2eqsstri 3302 1 (A B) A
Colors of variables: wff setvar class
Syntax hints:  Vcvv 2860  cin 3209   wss 3258   × cxp 4771   cres 4775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-res 4789
This theorem is referenced by:  ssreseq  4998  iss  5001  funres  5144  funres11  5165  funcnvres  5166  2elresin  5195  fssres  5239  foimacnv  5304
  Copyright terms: Public domain W3C validator