New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iss | GIF version |
Description: A subclass of the identity function is the identity function restricted to its domain. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 13-Dec-2003.) (Revised by set.mm contributors, 27-Aug-2011.) |
Ref | Expression |
---|---|
iss | ⊢ (A ⊆ I ↔ A = ( I ↾ dom A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3268 | . . . . . 6 ⊢ (A ⊆ I → (〈x, y〉 ∈ A → 〈x, y〉 ∈ I )) | |
2 | opeldm 4911 | . . . . . . 7 ⊢ (〈x, y〉 ∈ A → x ∈ dom A) | |
3 | 2 | a1i 10 | . . . . . 6 ⊢ (A ⊆ I → (〈x, y〉 ∈ A → x ∈ dom A)) |
4 | 1, 3 | jcad 519 | . . . . 5 ⊢ (A ⊆ I → (〈x, y〉 ∈ A → (〈x, y〉 ∈ I ∧ x ∈ dom A))) |
5 | df-br 4641 | . . . . . . . 8 ⊢ (x I y ↔ 〈x, y〉 ∈ I ) | |
6 | vex 2863 | . . . . . . . . 9 ⊢ y ∈ V | |
7 | 6 | ideq 4871 | . . . . . . . 8 ⊢ (x I y ↔ x = y) |
8 | 5, 7 | bitr3i 242 | . . . . . . 7 ⊢ (〈x, y〉 ∈ I ↔ x = y) |
9 | 8 | anbi1i 676 | . . . . . 6 ⊢ ((〈x, y〉 ∈ I ∧ x ∈ dom A) ↔ (x = y ∧ x ∈ dom A)) |
10 | eldm2 4900 | . . . . . . . . 9 ⊢ (x ∈ dom A ↔ ∃y〈x, y〉 ∈ A) | |
11 | 1, 8 | syl6ib 217 | . . . . . . . . . . 11 ⊢ (A ⊆ I → (〈x, y〉 ∈ A → x = y)) |
12 | opeq2 4580 | . . . . . . . . . . . . 13 ⊢ (x = y → 〈x, x〉 = 〈x, y〉) | |
13 | 12 | eleq1d 2419 | . . . . . . . . . . . 12 ⊢ (x = y → (〈x, x〉 ∈ A ↔ 〈x, y〉 ∈ A)) |
14 | 13 | biimprd 214 | . . . . . . . . . . 11 ⊢ (x = y → (〈x, y〉 ∈ A → 〈x, x〉 ∈ A)) |
15 | 11, 14 | syli 33 | . . . . . . . . . 10 ⊢ (A ⊆ I → (〈x, y〉 ∈ A → 〈x, x〉 ∈ A)) |
16 | 15 | exlimdv 1636 | . . . . . . . . 9 ⊢ (A ⊆ I → (∃y〈x, y〉 ∈ A → 〈x, x〉 ∈ A)) |
17 | 10, 16 | syl5bi 208 | . . . . . . . 8 ⊢ (A ⊆ I → (x ∈ dom A → 〈x, x〉 ∈ A)) |
18 | 13 | biimpd 198 | . . . . . . . 8 ⊢ (x = y → (〈x, x〉 ∈ A → 〈x, y〉 ∈ A)) |
19 | 17, 18 | syl9 66 | . . . . . . 7 ⊢ (A ⊆ I → (x = y → (x ∈ dom A → 〈x, y〉 ∈ A))) |
20 | 19 | imp3a 420 | . . . . . 6 ⊢ (A ⊆ I → ((x = y ∧ x ∈ dom A) → 〈x, y〉 ∈ A)) |
21 | 9, 20 | syl5bi 208 | . . . . 5 ⊢ (A ⊆ I → ((〈x, y〉 ∈ I ∧ x ∈ dom A) → 〈x, y〉 ∈ A)) |
22 | 4, 21 | impbid 183 | . . . 4 ⊢ (A ⊆ I → (〈x, y〉 ∈ A ↔ (〈x, y〉 ∈ I ∧ x ∈ dom A))) |
23 | opelres 4951 | . . . 4 ⊢ (〈x, y〉 ∈ ( I ↾ dom A) ↔ (〈x, y〉 ∈ I ∧ x ∈ dom A)) | |
24 | 22, 23 | syl6bbr 254 | . . 3 ⊢ (A ⊆ I → (〈x, y〉 ∈ A ↔ 〈x, y〉 ∈ ( I ↾ dom A))) |
25 | 24 | eqrelrdv 4853 | . 2 ⊢ (A ⊆ I → A = ( I ↾ dom A)) |
26 | resss 4989 | . . 3 ⊢ ( I ↾ dom A) ⊆ I | |
27 | sseq1 3293 | . . 3 ⊢ (A = ( I ↾ dom A) → (A ⊆ I ↔ ( I ↾ dom A) ⊆ I )) | |
28 | 26, 27 | mpbiri 224 | . 2 ⊢ (A = ( I ↾ dom A) → A ⊆ I ) |
29 | 25, 28 | impbii 180 | 1 ⊢ (A ⊆ I ↔ A = ( I ↾ dom A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 〈cop 4562 class class class wbr 4640 I cid 4764 dom cdm 4773 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 |
This theorem is referenced by: f1ococnv2 5310 |
Copyright terms: Public domain | W3C validator |