NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funres GIF version

Theorem funres 5144
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by set.mm contributors, 16-Aug-1994.)
Assertion
Ref Expression
funres (Fun F → Fun (F A))

Proof of Theorem funres
StepHypRef Expression
1 resss 4989 . 2 (F A) F
2 funss 5127 . 2 ((F A) F → (Fun F → Fun (F A)))
31, 2ax-mp 5 1 (Fun F → Fun (F A))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wss 3258   cres 4775  Fun wfun 4776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727  df-cnv 4786  df-res 4789  df-fun 4790
This theorem is referenced by:  fnssresb  5196  fnresi  5201  fores  5279  respreima  5411  funfvima  5460
  Copyright terms: Public domain W3C validator