NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem16 GIF version

Theorem nchoicelem16 6305
Description: Lemma for nchoice 6309. Set up stratification for nchoicelem17 6306. (Contributed by SF, 19-Mar-2015.)
Assertion
Ref Expression
nchoicelem16 {t ( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))} V
Distinct variable group:   t,m

Proof of Theorem nchoicelem16
Dummy variables n u v x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3522 . . 3 ({t ¬ ≤c We NC } ∪ {t m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))}) = {t (¬ ≤c We NC m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))}
2 elima3 4757 . . . . . 6 (t (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC )) ↔ u(u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) u, t ((2nd (1st “ {1c})) AddC )))
3 vex 2863 . . . . . . . . . . 11 u V
43eluni1 4174 . . . . . . . . . 10 (u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) ↔ {u} ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))
5 snex 4112 . . . . . . . . . . 11 {u} V
65elcompl 3226 . . . . . . . . . 10 ({u} ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) ↔ ¬ {u} (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))
7 elimapw13 4947 . . . . . . . . . . . 12 ({u} (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) ↔ m NC {{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)))
8 spacval 6283 . . . . . . . . . . . . . . . . . 18 (m NC → ( Spacm) = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
98nceqd 6111 . . . . . . . . . . . . . . . . 17 (m NCNc ( Spacm) = Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
109eqeq1d 2361 . . . . . . . . . . . . . . . 16 (m NC → ( Nc ( Spacm) = uNc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u))
11 tccl 6161 . . . . . . . . . . . . . . . . . . . 20 (m NCTc m NC )
12 spacval 6283 . . . . . . . . . . . . . . . . . . . 20 ( Tc m NC → ( SpacTc m) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
1311, 12syl 15 . . . . . . . . . . . . . . . . . . 19 (m NC → ( SpacTc m) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
1413eleq1d 2419 . . . . . . . . . . . . . . . . . 18 (m NC → (( SpacTc m) Fin Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
1513nceqd 6111 . . . . . . . . . . . . . . . . . . . 20 (m NCNc ( SpacTc m) = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
1615eqeq1d 2361 . . . . . . . . . . . . . . . . . . 19 (m NC → ( Nc ( SpacTc m) = ( Tc u +c 1c) ↔ Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c)))
1715eqeq1d 2361 . . . . . . . . . . . . . . . . . . 19 (m NC → ( Nc ( SpacTc m) = ( Tc u +c 2c) ↔ Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))
1816, 17orbi12d 690 . . . . . . . . . . . . . . . . . 18 (m NC → (( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c)) ↔ ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
1914, 18anbi12d 691 . . . . . . . . . . . . . . . . 17 (m NC → ((( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c))) ↔ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
2019notbid 285 . . . . . . . . . . . . . . . 16 (m NC → (¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c))) ↔ ¬ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
2110, 20anbi12d 691 . . . . . . . . . . . . . . 15 (m NC → (( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c)))) ↔ ( Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u ¬ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))))
22 eldif 3222 . . . . . . . . . . . . . . . 16 ({{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ ({{{m}}}, {u} SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ¬ {{{m}}}, {u} (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)))
23 snex 4112 . . . . . . . . . . . . . . . . . . . 20 {{m}} V
2423, 3opsnelsi 5775 . . . . . . . . . . . . . . . . . . 19 ({{{m}}}, {u} SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ {{m}}, u (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))
25 opelcnv 4894 . . . . . . . . . . . . . . . . . . 19 ({{m}}, u (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ u, {{m}} (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))
26 opelres 4951 . . . . . . . . . . . . . . . . . . . 20 (u, {{m}} (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ (u, {{m}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) u NC ))
27 opelcnv 4894 . . . . . . . . . . . . . . . . . . . . . 22 (u, {{m}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) ↔ {{m}}, u ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)))
28 opelco 4885 . . . . . . . . . . . . . . . . . . . . . . 23 ({{m}}, u ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) ↔ t({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t t S u))
29 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {m} V
3029brsnsi1 5776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)tv(t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v))
3130anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t t S u) ↔ (v(t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
32 19.41v 1901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ (v(t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
3331, 32bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t t S u) ↔ v((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
3433exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . 24 (t({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t t S u) ↔ tv((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
35 excom 1741 . . . . . . . . . . . . . . . . . . . . . . . 24 (tv((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ vt((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
3634, 35bitri 240 . . . . . . . . . . . . . . . . . . . . . . 23 (t({{m}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t t S u) ↔ vt((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u))
37 anass 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ (t = {v} ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v t S u)))
3837exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (t((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ t(t = {v} ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v t S u)))
39 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {v} V
40 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (t = {v} → (t S u ↔ {v} S u))
4140anbi2d 684 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (t = {v} → (({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v t S u) ↔ ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v {v} S u)))
4239, 41ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (t(t = {v} ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v t S u)) ↔ ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v {v} S u))
43 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)vv ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m})
44 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (v ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m} ↔ v, {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))
45 spacvallem1 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {x, y (x NC y NC y = (2cc x))} V
4645, 29nchoicelem10 6299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (v, {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) ↔ v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
4743, 44, 463bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)vv = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
48 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 v V
4948, 3brssetsn 4760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({v} S uv u)
5047, 49anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . 25 (({m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v {v} S u) ↔ (v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) v u))
5138, 42, 503bitri 262 . . . . . . . . . . . . . . . . . . . . . . . 24 (t((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ (v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) v u))
5251exbii 1582 . . . . . . . . . . . . . . . . . . . . . . 23 (vt((t = {v} {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)v) t S u) ↔ v(v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) v u))
5328, 36, 523bitri 262 . . . . . . . . . . . . . . . . . . . . . 22 ({{m}}, u ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) ↔ v(v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) v u))
5429, 45clos1ex 5877 . . . . . . . . . . . . . . . . . . . . . . 23 Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) V
55 eleq1 2413 . . . . . . . . . . . . . . . . . . . . . . 23 (v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) → (v u Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
5654, 55ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . 22 (v(v = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) v u) ↔ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u)
5727, 53, 563bitri 262 . . . . . . . . . . . . . . . . . . . . 21 (u, {{m}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) ↔ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u)
5857anbi1i 676 . . . . . . . . . . . . . . . . . . . 20 ((u, {{m}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) u NC ) ↔ ( Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u u NC ))
59 ancom 437 . . . . . . . . . . . . . . . . . . . 20 (( Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u u NC ) ↔ (u NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
6026, 58, 593bitri 262 . . . . . . . . . . . . . . . . . . 19 (u, {{m}} (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ (u NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
6124, 25, 603bitri 262 . . . . . . . . . . . . . . . . . 18 ({{{m}}}, {u} SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ (u NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
62 eqcom 2355 . . . . . . . . . . . . . . . . . . 19 ( Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = uu = Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
6354eqnc2 6130 . . . . . . . . . . . . . . . . . . 19 (u = Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) ↔ (u NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
6462, 63bitri 240 . . . . . . . . . . . . . . . . . 18 ( Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u ↔ (u NC Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) u))
6561, 64bitr4i 243 . . . . . . . . . . . . . . . . 17 ({{{m}}}, {u} SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ↔ Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u)
66 elimapw11c 4949 . . . . . . . . . . . . . . . . . . 19 ({{{m}}}, {u} (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c) ↔ n{{n}}, {{{m}}}, {u} ( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))))
67 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . 21 ({{n}}, {{{m}}}, {u} ( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) ↔ ({{n}}, {{{m}}} SI SI TcFn {{n}}, {u} (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))))
68 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . 24 {n} V
6968, 23opsnelsi 5775 . . . . . . . . . . . . . . . . . . . . . . 23 ({{n}}, {{{m}}} SI SI TcFn ↔ {n}, {{m}} SI TcFn)
70 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . 25 n V
7170, 29opsnelsi 5775 . . . . . . . . . . . . . . . . . . . . . . . 24 ({n}, {{m}} SI TcFn ↔ n, {m} TcFn)
72 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . 24 (nTcFn{m} ↔ n, {m} TcFn)
73 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . 24 (nTcFn{m} ↔ {m}TcFnn)
7471, 72, 733bitr2i 264 . . . . . . . . . . . . . . . . . . . . . . 23 ({n}, {{m}} SI TcFn ↔ {m}TcFnn)
75 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . 24 m V
7675brtcfn 6247 . . . . . . . . . . . . . . . . . . . . . . 23 ({m}TcFnnn = Tc m)
7769, 74, 763bitri 262 . . . . . . . . . . . . . . . . . . . . . 22 ({{n}}, {{{m}}} SI SI TcFn ↔ n = Tc m)
78 opelco 4885 . . . . . . . . . . . . . . . . . . . . . . 23 ({{n}}, {u} (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )) ↔ v({{n}}(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )v v((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ){u}))
79 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({{n}}(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )vv(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ){{n}})
80 brres 4950 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (v(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ){{n}} ↔ (v( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)){{n}} v NC ))
81 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (v( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)){{n}} ↔ {{n}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))v)
82 brco 4884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ({{n}} ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))vu({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v))
8368brsnsi1 5776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)ut(u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t))
8483anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v) ↔ (t(u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v))
85 19.41v 1901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (t((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ (t(u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v))
8684, 85bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v) ↔ t((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v))
8786exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (u({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v) ↔ ut((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v))
88 excom 1741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ut((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ tu((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v))
89 anass 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ (u = {t} ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t u S v)))
9089exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (u((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ u(u = {t} ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t u S v)))
91 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 {t} V
92 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (u = {t} → (u S v ↔ {t} S v))
9392anbi2d 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (u = {t} → (({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t u S v) ↔ ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t {t} S v)))
9491, 93ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (u(u = {t} ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t u S v)) ↔ ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t {t} S v))
95 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)tt ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){n})
96 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (t ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){n} ↔ t, {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))
9745, 68nchoicelem10 6299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (t, {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) ↔ t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}))
9895, 96, 973bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)tt = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}))
99 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t V
10099, 48brssetsn 4760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({t} S vt v)
10198, 100anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t {t} S v) ↔ (t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) t v))
10290, 94, 1013bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (u((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ (t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) t v))
103102exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (tu((u = {t} {n} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)t) u S v) ↔ t(t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) t v))
10487, 88, 1033bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (u({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v) ↔ t(t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) t v))
105 df-clel 2349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) vt(t = Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) t v))
106104, 105bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (u({{n}} SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)u u S v) ↔ Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v)
10781, 82, 1063bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (v( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)){{n}} ↔ Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v)
108107anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((v( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)){{n}} v NC ) ↔ ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v v NC ))
109 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v v NC ) ↔ (v NC Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v))
11080, 108, 1093bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (v(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ){{n}} ↔ (v NC Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v))
11168, 45clos1ex 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) V
112111eqnc2 6130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) ↔ (v NC Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) v))
113110, 112bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ){{n}} ↔ v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}))
11479, 113bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({{n}}(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )vv = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}))
115 brres 4950 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ){u} ↔ (v(TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))){u} v Nn ))
116 brco 4884 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (v(TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))){u} ↔ t(v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))t tTcFn{u}))
117 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))tt(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))v)
118 brun 4693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (t(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))v ↔ (t( AddC (1st (2nd “ {1c})))v t( AddC (1st (2nd “ {2c})))v))
119 brco 4884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (t( AddC (1st (2nd “ {1c})))vu(t(1st (2nd “ {1c}))u u AddC v))
120 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (t(1st (2nd “ {1c}))uu(1st (2nd “ {1c}))t)
121 brres 4950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (u(1st (2nd “ {1c}))t ↔ (u1st t u (2nd “ {1c})))
122 eliniseg 5021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (u (2nd “ {1c}) ↔ u2nd 1c)
123122anbi2i 675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((u1st t u (2nd “ {1c})) ↔ (u1st t u2nd 1c))
124121, 123bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (u(1st (2nd “ {1c}))t ↔ (u1st t u2nd 1c))
125 1cex 4143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1c V
12699, 125op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((u1st t u2nd 1c) ↔ u = t, 1c)
127120, 124, 1263bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (t(1st (2nd “ {1c}))uu = t, 1c)
128127anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((t(1st (2nd “ {1c}))u u AddC v) ↔ (u = t, 1c u AddC v))
129128exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (u(t(1st (2nd “ {1c}))u u AddC v) ↔ u(u = t, 1c u AddC v))
13099, 125opex 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t, 1c V
131 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (u = t, 1c → (u AddC vt, 1c AddC v))
132130, 131ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (u(u = t, 1c u AddC v) ↔ t, 1c AddC v)
133119, 129, 1323bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (t( AddC (1st (2nd “ {1c})))vt, 1c AddC v)
13499, 125braddcfn 5827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (t, 1c AddC v ↔ (t +c 1c) = v)
135 eqcom 2355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((t +c 1c) = vv = (t +c 1c))
136133, 134, 1353bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (t( AddC (1st (2nd “ {1c})))vv = (t +c 1c))
137 brco 4884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (t( AddC (1st (2nd “ {2c})))vu(t(1st (2nd “ {2c}))u u AddC v))
138 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (t(1st (2nd “ {2c}))uu(1st (2nd “ {2c}))t)
139 brres 4950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (u(1st (2nd “ {2c}))t ↔ (u1st t u (2nd “ {2c})))
140 eliniseg 5021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (u (2nd “ {2c}) ↔ u2nd 2c)
141140anbi2i 675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((u1st t u (2nd “ {2c})) ↔ (u1st t u2nd 2c))
142139, 141bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (u(1st (2nd “ {2c}))t ↔ (u1st t u2nd 2c))
143 2nc 6169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2c NC
144143elexi 2869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2c V
14599, 144op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((u1st t u2nd 2c) ↔ u = t, 2c)
146138, 142, 1453bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (t(1st (2nd “ {2c}))uu = t, 2c)
147146anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((t(1st (2nd “ {2c}))u u AddC v) ↔ (u = t, 2c u AddC v))
148147exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (u(t(1st (2nd “ {2c}))u u AddC v) ↔ u(u = t, 2c u AddC v))
14999, 144opex 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 t, 2c V
150 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (u = t, 2c → (u AddC vt, 2c AddC v))
151149, 150ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (u(u = t, 2c u AddC v) ↔ t, 2c AddC v)
152137, 148, 1513bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (t( AddC (1st (2nd “ {2c})))vt, 2c AddC v)
15399, 144braddcfn 5827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (t, 2c AddC v ↔ (t +c 2c) = v)
154 eqcom 2355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((t +c 2c) = vv = (t +c 2c))
155152, 153, 1543bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (t( AddC (1st (2nd “ {2c})))vv = (t +c 2c))
156136, 155orbi12i 507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((t( AddC (1st (2nd “ {1c})))v t( AddC (1st (2nd “ {2c})))v) ↔ (v = (t +c 1c) v = (t +c 2c)))
157117, 118, 1563bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))t ↔ (v = (t +c 1c) v = (t +c 2c)))
158 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (tTcFn{u} ↔ {u}TcFnt)
1593brtcfn 6247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ({u}TcFntt = Tc u)
160158, 159bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (tTcFn{u} ↔ t = Tc u)
161157, 160anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))t tTcFn{u}) ↔ ((v = (t +c 1c) v = (t +c 2c)) t = Tc u))
162 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((v = (t +c 1c) v = (t +c 2c)) t = Tc u) ↔ (t = Tc u (v = (t +c 1c) v = (t +c 2c))))
163161, 162bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))t tTcFn{u}) ↔ (t = Tc u (v = (t +c 1c) v = (t +c 2c))))
164163exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (t(v(( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))t tTcFn{u}) ↔ t(t = Tc u (v = (t +c 1c) v = (t +c 2c))))
165 tcex 6158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Tc u V
166 addceq1 4384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (t = Tc u → (t +c 1c) = ( Tc u +c 1c))
167166eqeq2d 2364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (t = Tc u → (v = (t +c 1c) ↔ v = ( Tc u +c 1c)))
168 addceq1 4384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (t = Tc u → (t +c 2c) = ( Tc u +c 2c))
169168eqeq2d 2364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (t = Tc u → (v = (t +c 2c) ↔ v = ( Tc u +c 2c)))
170167, 169orbi12d 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (t = Tc u → ((v = (t +c 1c) v = (t +c 2c)) ↔ (v = ( Tc u +c 1c) v = ( Tc u +c 2c))))
171165, 170ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (t(t = Tc u (v = (t +c 1c) v = (t +c 2c))) ↔ (v = ( Tc u +c 1c) v = ( Tc u +c 2c)))
172116, 164, 1713bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (v(TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))){u} ↔ (v = ( Tc u +c 1c) v = ( Tc u +c 2c)))
173172anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((v(TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))){u} v Nn ) ↔ ((v = ( Tc u +c 1c) v = ( Tc u +c 2c)) v Nn ))
174 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((v = ( Tc u +c 1c) v = ( Tc u +c 2c)) v Nn ) ↔ (v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c))))
175115, 173, 1743bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (v((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ){u} ↔ (v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c))))
176114, 175anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . 24 (({{n}}(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )v v((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ){u}) ↔ (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) (v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c)))))
177176exbii 1582 . . . . . . . . . . . . . . . . . . . . . . 23 (v({{n}}(( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )v v((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ){u}) ↔ v(v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) (v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c)))))
178 ncex 6118 . . . . . . . . . . . . . . . . . . . . . . . 24 Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) V
179 eleq1 2413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → (v NnNc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Nn ))
180 finnc 6244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) FinNc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Nn )
181179, 180syl6bbr 254 . . . . . . . . . . . . . . . . . . . . . . . . 25 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → (v Nn Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ))
182 eqeq1 2359 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → (v = ( Tc u +c 1c) ↔ Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c)))
183 eqeq1 2359 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → (v = ( Tc u +c 2c) ↔ Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))
184182, 183orbi12d 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → ((v = ( Tc u +c 1c) v = ( Tc u +c 2c)) ↔ ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
185181, 184anbi12d 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) → ((v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c))) ↔ ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
186178, 185ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . 23 (v(v = Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) (v Nn (v = ( Tc u +c 1c) v = ( Tc u +c 2c)))) ↔ ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
18778, 177, 1863bitri 262 . . . . . . . . . . . . . . . . . . . . . 22 ({{n}}, {u} (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )) ↔ ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
18877, 187anbi12i 678 . . . . . . . . . . . . . . . . . . . . 21 (({{n}}, {{{m}}} SI SI TcFn {{n}}, {u} (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) ↔ (n = Tc m ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
18967, 188bitri 240 . . . . . . . . . . . . . . . . . . . 20 ({{n}}, {{{m}}}, {u} ( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) ↔ (n = Tc m ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
190189exbii 1582 . . . . . . . . . . . . . . . . . . 19 (n{{n}}, {{{m}}}, {u} ( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) ↔ n(n = Tc m ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
191 tcex 6158 . . . . . . . . . . . . . . . . . . . 20 Tc m V
192 sneq 3745 . . . . . . . . . . . . . . . . . . . . . . 23 (n = Tc m → {n} = { Tc m})
193 clos1eq1 5875 . . . . . . . . . . . . . . . . . . . . . . 23 ({n} = { Tc m} → Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
194192, 193syl 15 . . . . . . . . . . . . . . . . . . . . . 22 (n = Tc m Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
195194eleq1d 2419 . . . . . . . . . . . . . . . . . . . . 21 (n = Tc m → ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
196194nceqd 6111 . . . . . . . . . . . . . . . . . . . . . . 23 (n = Tc mNc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
197196eqeq1d 2361 . . . . . . . . . . . . . . . . . . . . . 22 (n = Tc m → ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) ↔ Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c)))
198196eqeq1d 2361 . . . . . . . . . . . . . . . . . . . . . 22 (n = Tc m → ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c) ↔ Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))
199197, 198orbi12d 690 . . . . . . . . . . . . . . . . . . . . 21 (n = Tc m → (( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)) ↔ ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
200195, 199anbi12d 691 . . . . . . . . . . . . . . . . . . . 20 (n = Tc m → (( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))) ↔ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
201191, 200ceqsexv 2895 . . . . . . . . . . . . . . . . . . 19 (n(n = Tc m ( Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({n}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))) ↔ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
20266, 190, 2013bitri 262 . . . . . . . . . . . . . . . . . 18 ({{{m}}}, {u} (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c) ↔ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
203202notbii 287 . . . . . . . . . . . . . . . . 17 {{{m}}}, {u} (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c) ↔ ¬ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c))))
20465, 203anbi12i 678 . . . . . . . . . . . . . . . 16 (({{{m}}}, {u} SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) ¬ {{{m}}}, {u} (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ ( Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u ¬ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
20522, 204bitri 240 . . . . . . . . . . . . . . 15 ({{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ ( Nc Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) = u ¬ ( Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) Fin ( Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 1c) Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) = ( Tc u +c 2c)))))
20621, 205syl6rbbr 255 . . . . . . . . . . . . . 14 (m NC → ({{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ ( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c))))))
207 tceq 6159 . . . . . . . . . . . . . . . . . . . 20 ( Nc ( Spacm) = uTc Nc ( Spacm) = Tc u)
208207addceq1d 4390 . . . . . . . . . . . . . . . . . . 19 ( Nc ( Spacm) = u → ( Tc Nc ( Spacm) +c 1c) = ( Tc u +c 1c))
209208eqeq2d 2364 . . . . . . . . . . . . . . . . . 18 ( Nc ( Spacm) = u → ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) ↔ Nc ( SpacTc m) = ( Tc u +c 1c)))
210207addceq1d 4390 . . . . . . . . . . . . . . . . . . 19 ( Nc ( Spacm) = u → ( Tc Nc ( Spacm) +c 2c) = ( Tc u +c 2c))
211210eqeq2d 2364 . . . . . . . . . . . . . . . . . 18 ( Nc ( Spacm) = u → ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c) ↔ Nc ( SpacTc m) = ( Tc u +c 2c)))
212209, 211orbi12d 690 . . . . . . . . . . . . . . . . 17 ( Nc ( Spacm) = u → (( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)) ↔ ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c))))
213212anbi2d 684 . . . . . . . . . . . . . . . 16 ( Nc ( Spacm) = u → ((( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))) ↔ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c)))))
214213notbid 285 . . . . . . . . . . . . . . 15 ( Nc ( Spacm) = u → (¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))) ↔ ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c)))))
215214pm5.32i 618 . . . . . . . . . . . . . 14 (( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) ↔ ( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc u +c 1c) Nc ( SpacTc m) = ( Tc u +c 2c)))))
216206, 215syl6bbr 254 . . . . . . . . . . . . 13 (m NC → ({{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ ( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
217216rexbiia 2648 . . . . . . . . . . . 12 (m NC {{{m}}}, {u} ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) ↔ m NC ( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
218 rexanali 2661 . . . . . . . . . . . 12 (m NC ( Nc ( Spacm) = u ¬ (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) ↔ ¬ m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
2197, 217, 2183bitrri 263 . . . . . . . . . . 11 m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) ↔ {u} (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))
220219con1bii 321 . . . . . . . . . 10 (¬ {u} (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) ↔ m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
2214, 6, 2203bitri 262 . . . . . . . . 9 (u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) ↔ m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
222 opelco 4885 . . . . . . . . . . 11 (u, t ((2nd (1st “ {1c})) AddC ) ↔ v(u AddC v v(2nd (1st “ {1c}))t))
223 brcnv 4893 . . . . . . . . . . . . . 14 (u AddC vv AddC u)
224 brres 4950 . . . . . . . . . . . . . . 15 (v(2nd (1st “ {1c}))t ↔ (v2nd t v (1st “ {1c})))
225 eliniseg 5021 . . . . . . . . . . . . . . . . 17 (v (1st “ {1c}) ↔ v1st 1c)
226225anbi2i 675 . . . . . . . . . . . . . . . 16 ((v2nd t v (1st “ {1c})) ↔ (v2nd t v1st 1c))
227 ancom 437 . . . . . . . . . . . . . . . 16 ((v2nd t v1st 1c) ↔ (v1st 1c v2nd t))
228226, 227bitri 240 . . . . . . . . . . . . . . 15 ((v2nd t v (1st “ {1c})) ↔ (v1st 1c v2nd t))
229125, 99op1st2nd 5791 . . . . . . . . . . . . . . 15 ((v1st 1c v2nd t) ↔ v = 1c, t)
230224, 228, 2293bitri 262 . . . . . . . . . . . . . 14 (v(2nd (1st “ {1c}))tv = 1c, t)
231223, 230anbi12i 678 . . . . . . . . . . . . 13 ((u AddC v v(2nd (1st “ {1c}))t) ↔ (v AddC u v = 1c, t))
232 ancom 437 . . . . . . . . . . . . 13 ((v AddC u v = 1c, t) ↔ (v = 1c, t v AddC u))
233231, 232bitri 240 . . . . . . . . . . . 12 ((u AddC v v(2nd (1st “ {1c}))t) ↔ (v = 1c, t v AddC u))
234233exbii 1582 . . . . . . . . . . 11 (v(u AddC v v(2nd (1st “ {1c}))t) ↔ v(v = 1c, t v AddC u))
235125, 99opex 4589 . . . . . . . . . . . 12 1c, t V
236 breq1 4643 . . . . . . . . . . . 12 (v = 1c, t → (v AddC u1c, t AddC u))
237235, 236ceqsexv 2895 . . . . . . . . . . 11 (v(v = 1c, t v AddC u) ↔ 1c, t AddC u)
238222, 234, 2373bitri 262 . . . . . . . . . 10 (u, t ((2nd (1st “ {1c})) AddC ) ↔ 1c, t AddC u)
239125, 99braddcfn 5827 . . . . . . . . . 10 (1c, t AddC u ↔ (1c +c t) = u)
240 eqcom 2355 . . . . . . . . . 10 ((1c +c t) = uu = (1c +c t))
241238, 239, 2403bitri 262 . . . . . . . . 9 (u, t ((2nd (1st “ {1c})) AddC ) ↔ u = (1c +c t))
242221, 241anbi12i 678 . . . . . . . 8 ((u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) u, t ((2nd (1st “ {1c})) AddC )) ↔ (m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) u = (1c +c t)))
243 ancom 437 . . . . . . . 8 ((m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) u = (1c +c t)) ↔ (u = (1c +c t) m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
244242, 243bitri 240 . . . . . . 7 ((u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) u, t ((2nd (1st “ {1c})) AddC )) ↔ (u = (1c +c t) m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
245244exbii 1582 . . . . . 6 (u(u 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) u, t ((2nd (1st “ {1c})) AddC )) ↔ u(u = (1c +c t) m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
246125, 99addcex 4395 . . . . . . 7 (1c +c t) V
247 eqeq2 2362 . . . . . . . . 9 (u = (1c +c t) → ( Nc ( Spacm) = uNc ( Spacm) = (1c +c t)))
248247imbi1d 308 . . . . . . . 8 (u = (1c +c t) → (( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) ↔ ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
249248ralbidv 2635 . . . . . . 7 (u = (1c +c t) → (m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))) ↔ m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
250246, 249ceqsexv 2895 . . . . . 6 (u(u = (1c +c t) m NC ( Nc ( Spacm) = u → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))) ↔ m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
2512, 245, 2503bitri 262 . . . . 5 (t (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC )) ↔ m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))
252251abbi2i 2465 . . . 4 (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC )) = {t m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))}
253252uneq2i 3416 . . 3 ({t ¬ ≤c We NC } ∪ (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))) = ({t ¬ ≤c We NC } ∪ {t m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))})
254 imor 401 . . . 4 (( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))) ↔ (¬ ≤c We NC m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))))
255254abbii 2466 . . 3 {t ( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))} = {t (¬ ≤c We NC m NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))}
2561, 253, 2553eqtr4i 2383 . 2 ({t ¬ ≤c We NC } ∪ (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))) = {t ( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))}
257 abexv 4325 . . 3 {t ¬ ≤c We NC } V
258 2ndex 5113 . . . . . 6 2nd V
259 1stex 4740 . . . . . . . 8 1st V
260259cnvex 5103 . . . . . . 7 1st V
261 snex 4112 . . . . . . 7 {1c} V
262260, 261imaex 4748 . . . . . 6 (1st “ {1c}) V
263258, 262resex 5118 . . . . 5 (2nd (1st “ {1c})) V
264 addcfnex 5825 . . . . . 6 AddC V
265264cnvex 5103 . . . . 5 AddC V
266263, 265coex 4751 . . . 4 ((2nd (1st “ {1c})) AddC ) V
267 ssetex 4745 . . . . . . . . . . . . 13 S V
268267ins3ex 5799 . . . . . . . . . . . . . . . . . 18 Ins3 S V
269267complex 4105 . . . . . . . . . . . . . . . . . . . . . . 23 S V
270269cnvex 5103 . . . . . . . . . . . . . . . . . . . . . 22 S V
271267cnvex 5103 . . . . . . . . . . . . . . . . . . . . . . 23 S V
27245imageex 5802 . . . . . . . . . . . . . . . . . . . . . . . . 25 Image{x, y (x NC y NC y = (2cc x))} V
273267, 272coex 4751 . . . . . . . . . . . . . . . . . . . . . . . 24 ( S Image{x, y (x NC y NC y = (2cc x))}) V
274273fixex 5790 . . . . . . . . . . . . . . . . . . . . . . 23 Fix ( S Image{x, y (x NC y NC y = (2cc x))}) V
275271, 274resex 5118 . . . . . . . . . . . . . . . . . . . . . 22 ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})) V
276270, 275txpex 5786 . . . . . . . . . . . . . . . . . . . . 21 ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
277276rnex 5108 . . . . . . . . . . . . . . . . . . . 20 ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
278277complex 4105 . . . . . . . . . . . . . . . . . . 19 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
279278ins2ex 5798 . . . . . . . . . . . . . . . . . 18 Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
280268, 279symdifex 4109 . . . . . . . . . . . . . . . . 17 ( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) V
281280, 125imaex 4748 . . . . . . . . . . . . . . . 16 (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
282281complex 4105 . . . . . . . . . . . . . . 15 ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
283282cnvex 5103 . . . . . . . . . . . . . 14 ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
284283siex 4754 . . . . . . . . . . . . 13 SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
285267, 284coex 4751 . . . . . . . . . . . 12 ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) V
286285cnvex 5103 . . . . . . . . . . 11 ( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) V
287 ncsex 6112 . . . . . . . . . . 11 NC V
288286, 287resex 5118 . . . . . . . . . 10 (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) V
289288cnvex 5103 . . . . . . . . 9 (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) V
290289siex 4754 . . . . . . . 8 SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) V
291 tcfnex 6245 . . . . . . . . . . . . 13 TcFn V
292291cnvex 5103 . . . . . . . . . . . 12 TcFn V
293292siex 4754 . . . . . . . . . . 11 SI TcFn V
294293siex 4754 . . . . . . . . . 10 SI SI TcFn V
295258cnvex 5103 . . . . . . . . . . . . . . . . . . 19 2nd V
296295, 261imaex 4748 . . . . . . . . . . . . . . . . . 18 (2nd “ {1c}) V
297259, 296resex 5118 . . . . . . . . . . . . . . . . 17 (1st (2nd “ {1c})) V
298297cnvex 5103 . . . . . . . . . . . . . . . 16 (1st (2nd “ {1c})) V
299264, 298coex 4751 . . . . . . . . . . . . . . 15 ( AddC (1st (2nd “ {1c}))) V
300 snex 4112 . . . . . . . . . . . . . . . . . . 19 {2c} V
301295, 300imaex 4748 . . . . . . . . . . . . . . . . . 18 (2nd “ {2c}) V
302259, 301resex 5118 . . . . . . . . . . . . . . . . 17 (1st (2nd “ {2c})) V
303302cnvex 5103 . . . . . . . . . . . . . . . 16 (1st (2nd “ {2c})) V
304264, 303coex 4751 . . . . . . . . . . . . . . 15 ( AddC (1st (2nd “ {2c}))) V
305299, 304unex 4107 . . . . . . . . . . . . . 14 (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c})))) V
306305cnvex 5103 . . . . . . . . . . . . 13 (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c})))) V
307292, 306coex 4751 . . . . . . . . . . . 12 (TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) V
308 nncex 4397 . . . . . . . . . . . 12 Nn V
309307, 308resex 5118 . . . . . . . . . . 11 ((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) V
310309, 289coex 4751 . . . . . . . . . 10 (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC )) V
311294, 310txpex 5786 . . . . . . . . 9 ( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) V
312125pw1ex 4304 . . . . . . . . 9 11c V
313311, 312imaex 4748 . . . . . . . 8 (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c) V
314290, 313difex 4108 . . . . . . 7 ( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) V
315287pw1ex 4304 . . . . . . . . 9 1 NC V
316315pw1ex 4304 . . . . . . . 8 11 NC V
317316pw1ex 4304 . . . . . . 7 111 NC V
318314, 317imaex 4748 . . . . . 6 (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) V
319318complex 4105 . . . . 5 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) V
320319uni1ex 4294 . . . 4 1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ) V
321266, 320imaex 4748 . . 3 (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC )) V
322257, 321unex 4107 . 2 ({t ¬ ≤c We NC } ∪ (((2nd (1st “ {1c})) AddC ) “ ⋃1 ∼ (( SI (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ) (( SI SI TcFn ⊗ (((TcFn (( AddC (1st (2nd “ {1c}))) ∪ ( AddC (1st (2nd “ {2c}))))) Nn ) (( S SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c)) NC ))) “ 11c)) “ 111 NC ))) V
323256, 322eqeltrri 2424 1 {t ( ≤c We NCm NC ( Nc ( Spacm) = (1c +c t) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c)))))} V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  csymdif 3210  {csn 3738  1cuni1 4134  1cc1c 4135  1cpw1 4136   Nn cnnc 4374   +c cplc 4376   Fin cfin 4377  cop 4562  {copab 4623   class class class wbr 4640  1st c1st 4718   S csset 4720   SI csi 4721   ccom 4722  cima 4723  ccnv 4772  ran crn 4774   cres 4775  cfv 4782  2nd c2nd 4784  (class class class)co 5526  ctxp 5736   Fix cfix 5740   AddC caddcfn 5746   Ins2 cins2 5750   Ins3 cins3 5752  Imagecimage 5754   Clos1 cclos1 5873   We cwe 5896   NC cncs 6089  c clec 6090   Nc cnc 6092   Tc ctc 6094  2cc2c 6095  c cce 6097  TcFnctcfn 6098   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-cup 5743  df-disj 5745  df-addcfn 5747  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104  df-2c 6105  df-ce 6107  df-tcfn 6108  df-spac 6275
This theorem is referenced by:  nchoicelem17  6306
  Copyright terms: Public domain W3C validator