Step | Hyp | Ref
| Expression |
1 | | unab 3522 |
. . 3
⊢ ({t ∣ ¬
≤c We NC } ∪ {t ∣ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))}) =
{t ∣
(¬ ≤c We NC ∨ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))} |
2 | | elima3 4757 |
. . . . . 6
⊢ (t ∈
(((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC ))
↔ ∃u(u ∈ ⋃1 ∼ ((
SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∧ 〈u, t〉 ∈
((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC
))) |
3 | | vex 2863 |
. . . . . . . . . . 11
⊢ u ∈
V |
4 | 3 | eluni1 4174 |
. . . . . . . . . 10
⊢ (u ∈
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
↔ {u} ∈ ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC
)) |
5 | | snex 4112 |
. . . . . . . . . . 11
⊢ {u} ∈
V |
6 | 5 | elcompl 3226 |
. . . . . . . . . 10
⊢ ({u} ∈ ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
↔ ¬ {u} ∈ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC
)) |
7 | | elimapw13 4947 |
. . . . . . . . . . . 12
⊢ ({u} ∈ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
↔ ∃m ∈ NC 〈{{{m}}}, {u}〉 ∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c))) |
8 | | spacval 6283 |
. . . . . . . . . . . . . . . . . 18
⊢ (m ∈ NC → ( Spac
‘m) = Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
9 | 8 | nceqd 6111 |
. . . . . . . . . . . . . . . . 17
⊢ (m ∈ NC → Nc ( Spac ‘m) = Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
10 | 9 | eqeq1d 2361 |
. . . . . . . . . . . . . . . 16
⊢ (m ∈ NC → ( Nc ( Spac ‘m) = u ↔
Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = u)) |
11 | | tccl 6161 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m ∈ NC → Tc
m ∈ NC ) |
12 | | spacval 6283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Tc m
∈ NC → (
Spac ‘ Tc m) =
Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
13 | 11, 12 | syl 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m ∈ NC → ( Spac
‘ Tc m) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
14 | 13 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . 18
⊢ (m ∈ NC → (( Spac ‘ Tc m)
∈ Fin ↔
Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
15 | 13 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m ∈ NC → Nc ( Spac ‘ Tc m) =
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
16 | 15 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m ∈ NC → ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ↔
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c))) |
17 | 15 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m ∈ NC → ( Nc ( Spac ‘ Tc m) = (
Tc u +c 2c) ↔
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))) |
18 | 16, 17 | orbi12d 690 |
. . . . . . . . . . . . . . . . . 18
⊢ (m ∈ NC → (( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c 2c)) ↔
( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))) |
19 | 14, 18 | anbi12d 691 |
. . . . . . . . . . . . . . . . 17
⊢ (m ∈ NC → ((( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c 2c)))
↔ ( Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))))) |
20 | 19 | notbid 285 |
. . . . . . . . . . . . . . . 16
⊢ (m ∈ NC → (¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c 2c)))
↔ ¬ ( Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))))) |
21 | 10, 20 | anbi12d 691 |
. . . . . . . . . . . . . . 15
⊢ (m ∈ NC → (( Nc ( Spac ‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c 2c))))
↔ ( Nc Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = u ∧ ¬ ( Clos1 ({
Tc m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))))) |
22 | | eldif 3222 |
. . . . . . . . . . . . . . . 16
⊢ (〈{{{m}}},
{u}〉
∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
(〈{{{m}}}, {u}〉 ∈ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∧ ¬ 〈{{{m}}},
{u}〉
∈ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c))) |
23 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {{m}} ∈
V |
24 | 23, 3 | opsnelsi 5775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{{{m}}},
{u}〉
∈ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔ 〈{{m}},
u〉 ∈ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC
)) |
25 | | opelcnv 4894 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{{m}},
u〉 ∈ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔ 〈u, {{m}}〉 ∈ (◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC
)) |
26 | | opelres 4951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈u, {{m}}〉 ∈ (◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔ (〈u, {{m}}〉 ∈ ◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ∧ u ∈ NC
)) |
27 | | opelcnv 4894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈u, {{m}}〉 ∈ ◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↔ 〈{{m}},
u〉 ∈ ( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “
1c))) |
28 | | opelco 4885 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{{m}},
u〉 ∈ ( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↔ ∃t({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ t S u)) |
29 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {m} ∈
V |
30 | 29 | brsnsi1 5776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ↔ ∃v(t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v)) |
31 | 30 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ t S u) ↔ (∃v(t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
32 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∃v((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ (∃v(t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
33 | 31, 32 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ t S u) ↔ ∃v((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
34 | 33 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ t S u) ↔ ∃t∃v((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
35 | | excom 1741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t∃v((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ ∃v∃t((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
36 | 34, 35 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃t({{m}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ t S u) ↔ ∃v∃t((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u)) |
37 | | anass 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ (t =
{v} ∧
({m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ t S u))) |
38 | 37 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃t((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ ∃t(t = {v} ∧ ({m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ t S u))) |
39 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {v} ∈
V |
40 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (t = {v} →
(t S u ↔ {v} S u)) |
41 | 40 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (t = {v} →
(({m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ t S u) ↔ ({m}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ {v} S u))) |
42 | 39, 41 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃t(t = {v} ∧ ({m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ t S u)) ↔ ({m}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ {v} S u)) |
43 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({m}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ↔ v ∼
(( Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m}) |
44 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (v ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m} ↔ 〈v, {m}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “
1c)) |
45 | | spacvallem1 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} ∈
V |
46 | 45, 29 | nchoicelem10 6299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (〈v, {m}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ↔
v = Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
47 | 43, 44, 46 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({m}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ↔ v =
Clos1 ({m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
48 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ v ∈
V |
49 | 48, 3 | brssetsn 4760 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({v} S u ↔ v ∈ u) |
50 | 47, 49 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (({m}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v ∧ {v} S u) ↔ (v =
Clos1 ({m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ v ∈ u)) |
51 | 38, 42, 50 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ (v =
Clos1 ({m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ v ∈ u)) |
52 | 51 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃v∃t((t = {v} ∧ {m}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)v) ∧ t S u) ↔ ∃v(v = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
v ∈
u)) |
53 | 28, 36, 52 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{{m}},
u〉 ∈ ( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↔ ∃v(v = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
v ∈
u)) |
54 | 29, 45 | clos1ex 5877 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
55 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (v = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) → (v ∈ u ↔ Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u)) |
56 | 54, 55 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃v(v = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
v ∈
u) ↔ Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u) |
57 | 27, 53, 56 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈u, {{m}}〉 ∈ ◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↔ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u) |
58 | 57 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((〈u, {{m}}〉 ∈ ◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ∧ u ∈ NC ) ↔ ( Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u ∧ u ∈ NC )) |
59 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (( Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u ∧ u ∈ NC ) ↔ (u ∈ NC ∧ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
u)) |
60 | 26, 58, 59 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈u, {{m}}〉 ∈ (◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔
(u ∈
NC ∧ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u)) |
61 | 24, 25, 60 | 3bitri 262 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{{{m}}},
{u}〉
∈ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔
(u ∈
NC ∧ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ u)) |
62 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = u ↔ u =
Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |
63 | 54 | eqnc2 6130 |
. . . . . . . . . . . . . . . . . . 19
⊢ (u = Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ↔ (u
∈ NC ∧ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
u)) |
64 | 62, 63 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ ( Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = u ↔ (u
∈ NC ∧ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
u)) |
65 | 61, 64 | bitr4i 243 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{{{m}}},
{u}〉
∈ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ↔ Nc Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = u) |
66 | | elimapw11c 4949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{{{m}}},
{u}〉
∈ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c) ↔
∃n〈{{n}}, 〈{{{m}}},
{u}〉〉 ∈ ( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC
)))) |
67 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{{n}}, 〈{{{m}}},
{u}〉〉 ∈ ( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) ↔
(〈{{n}},
{{{m}}}〉
∈ SI SI ◡TcFn ∧ 〈{{n}}, {u}〉 ∈ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC
)))) |
68 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {n} ∈
V |
69 | 68, 23 | opsnelsi 5775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{{n}},
{{{m}}}〉
∈ SI SI ◡TcFn ↔
〈{n},
{{m}}〉
∈ SI ◡TcFn) |
70 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ n ∈
V |
71 | 70, 29 | opsnelsi 5775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{n},
{{m}}〉
∈ SI ◡TcFn ↔ 〈n, {m}〉 ∈ ◡TcFn) |
72 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (n◡TcFn{m}
↔ 〈n, {m}〉 ∈ ◡TcFn) |
73 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (n◡TcFn{m}
↔ {m}TcFnn) |
74 | 71, 72, 73 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{n},
{{m}}〉
∈ SI ◡TcFn ↔ {m}TcFnn) |
75 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ m ∈
V |
76 | 75 | brtcfn 6247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({m}TcFnn ↔
n = Tc m) |
77 | 69, 74, 76 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{{n}},
{{{m}}}〉
∈ SI SI ◡TcFn ↔
n = Tc m) |
78 | | opelco 4885 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{{n}},
{u}〉
∈ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )) ↔ ∃v({{n}}◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )v ∧ v((◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ){u})) |
79 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({{n}}◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )v ↔ v(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ){{n}}) |
80 | | brres 4950 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (v(◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ){{n}} ↔ (v◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)){{n}} ∧ v ∈ NC )) |
81 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (v◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)){{n}} ↔ {{n}}
( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c))v) |
82 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ({{n}} ( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c))v ↔ ∃u({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v)) |
83 | 68 | brsnsi1 5776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ↔ ∃t(u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t)) |
84 | 83 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v) ↔ (∃t(u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v)) |
85 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (∃t((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ (∃t(u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v)) |
86 | 84, 85 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v) ↔ ∃t((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v)) |
87 | 86 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (∃u({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v) ↔ ∃u∃t((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v)) |
88 | | excom 1741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (∃u∃t((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ ∃t∃u((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v)) |
89 | | anass 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ (u =
{t} ∧
({n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ u S v))) |
90 | 89 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (∃u((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ ∃u(u = {t} ∧ ({n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ u S v))) |
91 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ {t} ∈
V |
92 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (u = {t} →
(u S v ↔ {t} S v)) |
93 | 92 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (u = {t} →
(({n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ u S v) ↔ ({n}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ {t} S v))) |
94 | 91, 93 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (∃u(u = {t} ∧ ({n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ u S v)) ↔ ({n}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ {t} S v)) |
95 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ({n}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ↔ t ∼
(( Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){n}) |
96 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (t ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){n} ↔ 〈t, {n}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “
1c)) |
97 | 45, 68 | nchoicelem10 6299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (〈t, {n}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ↔
t = Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
98 | 95, 96, 97 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ({n}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ↔ t =
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
99 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ t ∈
V |
100 | 99, 48 | brssetsn 4760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ({t} S v ↔ t ∈ v) |
101 | 98, 100 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (({n}◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t ∧ {t} S v) ↔ (t =
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ t ∈ v)) |
102 | 90, 94, 101 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (∃u((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ (t =
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ t ∈ v)) |
103 | 102 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (∃t∃u((u = {t} ∧ {n}◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)t) ∧ u S v) ↔ ∃t(t = Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
t ∈
v)) |
104 | 87, 88, 103 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (∃u({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v) ↔ ∃t(t = Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
t ∈
v)) |
105 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ v ↔ ∃t(t = Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
t ∈
v)) |
106 | 104, 105 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (∃u({{n}} SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)u ∧ u S v) ↔ Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ v) |
107 | 81, 82, 106 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (v◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)){{n}} ↔ Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ v) |
108 | 107 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((v◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)){{n}} ∧ v ∈ NC ) ↔ ( Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ v ∧ v ∈ NC )) |
109 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ v ∧ v ∈ NC ) ↔ (v ∈ NC ∧ Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
v)) |
110 | 80, 108, 109 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (v(◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ){{n}} ↔ (v
∈ NC ∧ Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
v)) |
111 | 68, 45 | clos1ex 5877 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
112 | 111 | eqnc2 6130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ↔ (v
∈ NC ∧ Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
v)) |
113 | 110, 112 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (v(◡( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ){{n}} ↔ v =
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |
114 | 79, 113 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ({{n}}◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )v ↔ v =
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |
115 | | brres 4950 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (v((◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ){u} ↔
(v(◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))){u} ∧ v ∈ Nn
)) |
116 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (v(◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))){u} ↔ ∃t(v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ∧ t◡TcFn{u})) |
117 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ↔ t(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))v) |
118 | | brun 4693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (t(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))v ↔
(t( AddC ∘ ◡(1st ↾ (◡2nd “
{1c})))v ∨ t( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))v)) |
119 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{1c})))v ↔ ∃u(t◡(1st ↾ (◡2nd “
{1c}))u ∧ u AddC v)) |
120 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (t◡(1st ↾ (◡2nd “
{1c}))u ↔ u(1st ↾ (◡2nd “
{1c}))t) |
121 | | brres 4950 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (u(1st ↾ (◡2nd “
{1c}))t ↔ (u1st t ∧ u ∈ (◡2nd “
{1c}))) |
122 | | eliniseg 5021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (u ∈ (◡2nd “
{1c}) ↔ u2nd
1c) |
123 | 122 | anbi2i 675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((u1st t ∧ u ∈ (◡2nd “
{1c})) ↔ (u1st t ∧ u2nd
1c)) |
124 | 121, 123 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (u(1st ↾ (◡2nd “
{1c}))t ↔ (u1st t ∧ u2nd
1c)) |
125 | | 1cex 4143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
1c ∈
V |
126 | 99, 125 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((u1st t ∧ u2nd 1c) ↔
u = 〈t,
1c〉) |
127 | 120, 124,
126 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (t◡(1st ↾ (◡2nd “
{1c}))u ↔ u = 〈t, 1c〉) |
128 | 127 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((t◡(1st ↾ (◡2nd “
{1c}))u ∧ u AddC v) ↔
(u = 〈t,
1c〉 ∧ u AddC v)) |
129 | 128 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (∃u(t◡(1st ↾ (◡2nd “
{1c}))u ∧ u AddC v) ↔ ∃u(u = 〈t, 1c〉 ∧ u AddC v)) |
130 | 99, 125 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ 〈t,
1c〉 ∈ V |
131 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (u = 〈t, 1c〉 → (u
AddC v ↔
〈t,
1c〉 AddC v)) |
132 | 130, 131 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (∃u(u = 〈t, 1c〉 ∧ u AddC v) ↔ 〈t,
1c〉 AddC v) |
133 | 119, 129,
132 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{1c})))v ↔ 〈t,
1c〉 AddC v) |
134 | 99, 125 | braddcfn 5827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (〈t,
1c〉 AddC v ↔
(t +c
1c) = v) |
135 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((t +c 1c) =
v ↔ v = (t
+c 1c)) |
136 | 133, 134,
135 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{1c})))v ↔ v = (t
+c 1c)) |
137 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))v ↔ ∃u(t◡(1st ↾ (◡2nd “
{2c}))u ∧ u AddC v)) |
138 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (t◡(1st ↾ (◡2nd “
{2c}))u ↔ u(1st ↾ (◡2nd “
{2c}))t) |
139 | | brres 4950 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (u(1st ↾ (◡2nd “
{2c}))t ↔ (u1st t ∧ u ∈ (◡2nd “
{2c}))) |
140 | | eliniseg 5021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (u ∈ (◡2nd “
{2c}) ↔ u2nd
2c) |
141 | 140 | anbi2i 675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((u1st t ∧ u ∈ (◡2nd “
{2c})) ↔ (u1st t ∧ u2nd
2c)) |
142 | 139, 141 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (u(1st ↾ (◡2nd “
{2c}))t ↔ (u1st t ∧ u2nd
2c)) |
143 | | 2nc 6169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
2c ∈ NC |
144 | 143 | elexi 2869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
2c ∈
V |
145 | 99, 144 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((u1st t ∧ u2nd 2c) ↔
u = 〈t,
2c〉) |
146 | 138, 142,
145 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (t◡(1st ↾ (◡2nd “
{2c}))u ↔ u = 〈t, 2c〉) |
147 | 146 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((t◡(1st ↾ (◡2nd “
{2c}))u ∧ u AddC v) ↔
(u = 〈t,
2c〉 ∧ u AddC v)) |
148 | 147 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (∃u(t◡(1st ↾ (◡2nd “
{2c}))u ∧ u AddC v) ↔ ∃u(u = 〈t, 2c〉 ∧ u AddC v)) |
149 | 99, 144 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ 〈t,
2c〉 ∈ V |
150 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (u = 〈t, 2c〉 → (u
AddC v ↔
〈t,
2c〉 AddC v)) |
151 | 149, 150 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (∃u(u = 〈t, 2c〉 ∧ u AddC v) ↔ 〈t,
2c〉 AddC v) |
152 | 137, 148,
151 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))v ↔ 〈t,
2c〉 AddC v) |
153 | 99, 144 | braddcfn 5827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (〈t,
2c〉 AddC v ↔
(t +c
2c) = v) |
154 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((t +c 2c) =
v ↔ v = (t
+c 2c)) |
155 | 152, 153,
154 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (t( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))v ↔ v = (t
+c 2c)) |
156 | 136, 155 | orbi12i 507 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((t( AddC ∘ ◡(1st ↾ (◡2nd “
{1c})))v ∨ t( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))v) ↔
(v = (t
+c 1c) ∨
v = (t
+c 2c))) |
157 | 117, 118,
156 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ↔
(v = (t
+c 1c) ∨
v = (t
+c 2c))) |
158 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (t◡TcFn{u}
↔ {u}TcFnt) |
159 | 3 | brtcfn 6247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ({u}TcFnt ↔
t = Tc u) |
160 | 158, 159 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (t◡TcFn{u}
↔ t = Tc u) |
161 | 157, 160 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ∧ t◡TcFn{u})
↔ ((v = (t +c 1c) ∨ v = (t +c 2c)) ∧ t = Tc u)) |
162 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((v = (t
+c 1c) ∨
v = (t
+c 2c)) ∧
t = Tc u)
↔ (t = Tc u
∧ (v =
(t +c
1c) ∨ v = (t
+c 2c)))) |
163 | 161, 162 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ∧ t◡TcFn{u})
↔ (t = Tc u
∧ (v =
(t +c
1c) ∨ v = (t
+c 2c)))) |
164 | 163 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃t(v◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))t ∧ t◡TcFn{u})
↔ ∃t(t = Tc u
∧ (v =
(t +c
1c) ∨ v = (t
+c 2c)))) |
165 | | tcex 6158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ Tc u
∈ V |
166 | | addceq1 4384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (t = Tc
u → (t +c 1c) = (
Tc u +c
1c)) |
167 | 166 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (t = Tc
u → (v = (t
+c 1c) ↔ v = ( Tc
u +c
1c))) |
168 | | addceq1 4384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (t = Tc
u → (t +c 2c) = (
Tc u +c
2c)) |
169 | 168 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (t = Tc
u → (v = (t
+c 2c) ↔ v = ( Tc
u +c
2c))) |
170 | 167, 169 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (t = Tc
u → ((v = (t
+c 1c) ∨
v = (t
+c 2c)) ↔ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c)))) |
171 | 165, 170 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃t(t = Tc
u ∧
(v = (t
+c 1c) ∨
v = (t
+c 2c))) ↔ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c))) |
172 | 116, 164,
171 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (v(◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))){u} ↔
(v = ( Tc u
+c 1c) ∨
v = ( Tc u
+c 2c))) |
173 | 172 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((v(◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))){u} ∧ v ∈ Nn ) ↔
((v = ( Tc u
+c 1c) ∨
v = ( Tc u
+c 2c)) ∧
v ∈ Nn )) |
174 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c)) ∧ v ∈ Nn ) ↔ (v ∈ Nn ∧ (v = ( Tc u
+c 1c) ∨
v = ( Tc u
+c 2c)))) |
175 | 115, 173,
174 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (v((◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ){u} ↔
(v ∈
Nn ∧ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c)))) |
176 | 114, 175 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({{n}}◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )v ∧ v((◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ){u}) ↔
(v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ (v ∈ Nn ∧ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c))))) |
177 | 176 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃v({{n}}◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )v ∧ v((◡TcFn
∘ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ){u}) ↔
∃v(v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
(v ∈
Nn ∧ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c))))) |
178 | | ncex 6118 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
V |
179 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → (v
∈ Nn ↔
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Nn )) |
180 | | finnc 6244 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ↔ Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Nn ) |
181 | 179, 180 | syl6bbr 254 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → (v
∈ Nn ↔
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
182 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → (v
= ( Tc u +c 1c) ↔
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c))) |
183 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → (v
= ( Tc u +c 2c) ↔
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))) |
184 | 182, 183 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → ((v
= ( Tc u +c 1c) ∨ v = ( Tc u
+c 2c)) ↔ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c)))) |
185 | 181, 184 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → ((v
∈ Nn ∧ (v = ( Tc u
+c 1c) ∨
v = ( Tc u
+c 2c))) ↔ (
Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))))) |
186 | 178, 185 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃v(v = Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ (v ∈ Nn ∧ (v = ( Tc
u +c
1c) ∨ v = ( Tc
u +c
2c)))) ↔ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c)))) |
187 | 78, 177, 186 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{{n}},
{u}〉
∈ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )) ↔ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c)))) |
188 | 77, 187 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((〈{{n}},
{{{m}}}〉
∈ SI SI ◡TcFn ∧ 〈{{n}}, {u}〉 ∈ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) ↔
(n = Tc m
∧ ( Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))))) |
189 | 67, 188 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{{n}}, 〈{{{m}}},
{u}〉〉 ∈ ( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) ↔
(n = Tc m
∧ ( Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))))) |
190 | 189 | exbii 1582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃n〈{{n}}, 〈{{{m}}},
{u}〉〉 ∈ ( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) ↔ ∃n(n = Tc
m ∧ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))))) |
191 | | tcex 6158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Tc m
∈ V |
192 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (n = Tc
m → {n} = { Tc
m}) |
193 | | clos1eq1 5875 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({n} = { Tc
m} → Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
194 | 192, 193 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (n = Tc
m → Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
195 | 194 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (n = Tc
m → ( Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ↔ Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
196 | 194 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (n = Tc
m → Nc
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
197 | 196 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (n = Tc
m → ( Nc
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ↔ Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c))) |
198 | 196 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (n = Tc
m → ( Nc
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c) ↔ Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))) |
199 | 197, 198 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (n = Tc
m → (( Nc
Clos1 ({n},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c)) ↔ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))) |
200 | 195, 199 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (n = Tc
m → (( Clos1
({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c))) ↔ (
Clos1 ({ Tc m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))))) |
201 | 191, 200 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃n(n = Tc
m ∧ ( Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 1c) ∨
Nc Clos1 ({n}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) = ( Tc u
+c 2c)))) ↔ (
Clos1 ({ Tc m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))) |
202 | 66, 190, 201 | 3bitri 262 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{{{m}}},
{u}〉
∈ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c) ↔
( Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))) |
203 | 202 | notbii 287 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 〈{{{m}}},
{u}〉
∈ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c) ↔
¬ ( Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c)))) |
204 | 65, 203 | anbi12i 678 |
. . . . . . . . . . . . . . . 16
⊢ ((〈{{{m}}},
{u}〉
∈ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∧ ¬ 〈{{{m}}},
{u}〉
∈ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
( Nc Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = u ∧ ¬ ( Clos1 ({
Tc m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))))) |
205 | 22, 204 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (〈{{{m}}},
{u}〉
∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
( Nc Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = u ∧ ¬ ( Clos1 ({
Tc m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin ∧ ( Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
1c) ∨ Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = ( Tc
u +c
2c))))) |
206 | 21, 205 | syl6rbbr 255 |
. . . . . . . . . . . . . 14
⊢ (m ∈ NC → (〈{{{m}}},
{u}〉
∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
( Nc ( Spac ‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c
2c)))))) |
207 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Nc ( Spac
‘m) = u → Tc
Nc ( Spac
‘m) = Tc u) |
208 | 207 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc ( Spac
‘m) = u → ( Tc Nc ( Spac ‘m) +c 1c) = (
Tc u +c
1c)) |
209 | 208 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
⊢ ( Nc ( Spac
‘m) = u → ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ↔
Nc ( Spac
‘ Tc m) = ( Tc
u +c
1c))) |
210 | 207 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Nc ( Spac
‘m) = u → ( Tc Nc ( Spac ‘m) +c 2c) = (
Tc u +c
2c)) |
211 | 210 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . 18
⊢ ( Nc ( Spac
‘m) = u → ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c) ↔
Nc ( Spac
‘ Tc m) = ( Tc
u +c
2c))) |
212 | 209, 211 | orbi12d 690 |
. . . . . . . . . . . . . . . . 17
⊢ ( Nc ( Spac
‘m) = u → (( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))
↔ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c
2c)))) |
213 | 212 | anbi2d 684 |
. . . . . . . . . . . . . . . 16
⊢ ( Nc ( Spac
‘m) = u → ((( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c
2c))))) |
214 | 213 | notbid 285 |
. . . . . . . . . . . . . . 15
⊢ ( Nc ( Spac
‘m) = u → (¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c
2c))))) |
215 | 214 | pm5.32i 618 |
. . . . . . . . . . . . . 14
⊢ (( Nc ( Spac
‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc u +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc u +c
2c))))) |
216 | 206, 215 | syl6bbr 254 |
. . . . . . . . . . . . 13
⊢ (m ∈ NC → (〈{{{m}}},
{u}〉
∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
( Nc ( Spac ‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
217 | 216 | rexbiia 2648 |
. . . . . . . . . . . 12
⊢ (∃m ∈ NC 〈{{{m}}},
{u}〉
∈ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ↔
∃m ∈ NC ( Nc ( Spac
‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
218 | | rexanali 2661 |
. . . . . . . . . . . 12
⊢ (∃m ∈ NC ( Nc ( Spac
‘m) = u ∧ ¬ (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ¬ ∀m ∈ NC ( Nc ( Spac ‘m) = u → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
219 | 7, 217, 218 | 3bitrri 263 |
. . . . . . . . . . 11
⊢ (¬ ∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ {u} ∈ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC
)) |
220 | 219 | con1bii 321 |
. . . . . . . . . 10
⊢ (¬ {u} ∈ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = u → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
221 | 4, 6, 220 | 3bitri 262 |
. . . . . . . . 9
⊢ (u ∈
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = u → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
222 | | opelco 4885 |
. . . . . . . . . . 11
⊢ (〈u, t〉 ∈ ((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) ↔
∃v(u◡ AddC v ∧ v(2nd ↾ (◡1st “
{1c}))t)) |
223 | | brcnv 4893 |
. . . . . . . . . . . . . 14
⊢ (u◡ AddC v ↔
v AddC
u) |
224 | | brres 4950 |
. . . . . . . . . . . . . . 15
⊢ (v(2nd ↾ (◡1st “
{1c}))t ↔ (v2nd t ∧ v ∈ (◡1st “
{1c}))) |
225 | | eliniseg 5021 |
. . . . . . . . . . . . . . . . 17
⊢ (v ∈ (◡1st “
{1c}) ↔ v1st
1c) |
226 | 225 | anbi2i 675 |
. . . . . . . . . . . . . . . 16
⊢ ((v2nd t ∧ v ∈ (◡1st “
{1c})) ↔ (v2nd t ∧ v1st
1c)) |
227 | | ancom 437 |
. . . . . . . . . . . . . . . 16
⊢ ((v2nd t ∧ v1st 1c) ↔
(v1st 1c ∧ v2nd t)) |
228 | 226, 227 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ ((v2nd t ∧ v ∈ (◡1st “
{1c})) ↔ (v1st 1c ∧ v2nd t)) |
229 | 125, 99 | op1st2nd 5791 |
. . . . . . . . . . . . . . 15
⊢ ((v1st 1c ∧ v2nd t) ↔ v =
〈1c, t〉) |
230 | 224, 228,
229 | 3bitri 262 |
. . . . . . . . . . . . . 14
⊢ (v(2nd ↾ (◡1st “
{1c}))t ↔ v = 〈1c, t〉) |
231 | 223, 230 | anbi12i 678 |
. . . . . . . . . . . . 13
⊢ ((u◡ AddC v ∧ v(2nd ↾ (◡1st “
{1c}))t) ↔ (v AddC u ∧ v = 〈1c, t〉)) |
232 | | ancom 437 |
. . . . . . . . . . . . 13
⊢ ((v AddC u ∧ v = 〈1c, t〉) ↔
(v = 〈1c, t〉 ∧ v AddC u)) |
233 | 231, 232 | bitri 240 |
. . . . . . . . . . . 12
⊢ ((u◡ AddC v ∧ v(2nd ↾ (◡1st “
{1c}))t) ↔ (v = 〈1c, t〉 ∧ v AddC u)) |
234 | 233 | exbii 1582 |
. . . . . . . . . . 11
⊢ (∃v(u◡ AddC v ∧ v(2nd ↾ (◡1st “
{1c}))t) ↔ ∃v(v = 〈1c, t〉 ∧ v AddC u)) |
235 | 125, 99 | opex 4589 |
. . . . . . . . . . . 12
⊢ 〈1c, t〉 ∈ V |
236 | | breq1 4643 |
. . . . . . . . . . . 12
⊢ (v = 〈1c, t〉 →
(v AddC
u ↔ 〈1c, t〉 AddC u)) |
237 | 235, 236 | ceqsexv 2895 |
. . . . . . . . . . 11
⊢ (∃v(v = 〈1c, t〉 ∧ v AddC u) ↔ 〈1c, t〉 AddC u) |
238 | 222, 234,
237 | 3bitri 262 |
. . . . . . . . . 10
⊢ (〈u, t〉 ∈ ((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) ↔
〈1c, t〉 AddC u) |
239 | 125, 99 | braddcfn 5827 |
. . . . . . . . . 10
⊢ (〈1c, t〉 AddC u ↔
(1c +c t) = u) |
240 | | eqcom 2355 |
. . . . . . . . . 10
⊢
((1c +c t) = u ↔
u = (1c
+c t)) |
241 | 238, 239,
240 | 3bitri 262 |
. . . . . . . . 9
⊢ (〈u, t〉 ∈ ((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) ↔
u = (1c
+c t)) |
242 | 221, 241 | anbi12i 678 |
. . . . . . . 8
⊢ ((u ∈
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∧ 〈u, t〉 ∈
((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC )) ↔
(∀m
∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ u =
(1c +c t))) |
243 | | ancom 437 |
. . . . . . . 8
⊢ ((∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ u =
(1c +c t)) ↔ (u =
(1c +c t) ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
244 | 242, 243 | bitri 240 |
. . . . . . 7
⊢ ((u ∈
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∧ 〈u, t〉 ∈
((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC )) ↔
(u = (1c
+c t) ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = u → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
245 | 244 | exbii 1582 |
. . . . . 6
⊢ (∃u(u ∈
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∧ 〈u, t〉 ∈
((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC )) ↔
∃u(u =
(1c +c t) ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
246 | 125, 99 | addcex 4395 |
. . . . . . 7
⊢
(1c +c t) ∈
V |
247 | | eqeq2 2362 |
. . . . . . . . 9
⊢ (u = (1c +c
t) → ( Nc
( Spac ‘m) = u ↔
Nc ( Spac
‘m) = (1c
+c t))) |
248 | 247 | imbi1d 308 |
. . . . . . . 8
⊢ (u = (1c +c
t) → (( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
249 | 248 | ralbidv 2635 |
. . . . . . 7
⊢ (u = (1c +c
t) → (∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
250 | 246, 249 | ceqsexv 2895 |
. . . . . 6
⊢ (∃u(u = (1c +c
t) ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = u → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
251 | 2, 245, 250 | 3bitri 262 |
. . . . 5
⊢ (t ∈
(((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC ))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
252 | 251 | abbi2i 2465 |
. . . 4
⊢ (((2nd
↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC ))
= {t ∣
∀m
∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))} |
253 | 252 | uneq2i 3416 |
. . 3
⊢ ({t ∣ ¬
≤c We NC } ∪ (((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )))
= ({t ∣
¬ ≤c We NC } ∪ {t ∣ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))}) |
254 | | imor 401 |
. . . 4
⊢ (( ≤c
We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ (¬ ≤c We NC ∨ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
255 | 254 | abbii 2466 |
. . 3
⊢ {t ∣ (
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))} =
{t ∣
(¬ ≤c We NC ∨ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))} |
256 | 1, 253, 255 | 3eqtr4i 2383 |
. 2
⊢ ({t ∣ ¬
≤c We NC } ∪ (((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )))
= {t ∣ (
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))} |
257 | | abexv 4325 |
. . 3
⊢ {t ∣ ¬
≤c We NC } ∈
V |
258 | | 2ndex 5113 |
. . . . . 6
⊢ 2nd
∈ V |
259 | | 1stex 4740 |
. . . . . . . 8
⊢ 1st
∈ V |
260 | 259 | cnvex 5103 |
. . . . . . 7
⊢ ◡1st ∈ V |
261 | | snex 4112 |
. . . . . . 7
⊢
{1c} ∈
V |
262 | 260, 261 | imaex 4748 |
. . . . . 6
⊢ (◡1st “
{1c}) ∈ V |
263 | 258, 262 | resex 5118 |
. . . . 5
⊢ (2nd
↾ (◡1st “
{1c})) ∈ V |
264 | | addcfnex 5825 |
. . . . . 6
⊢ AddC ∈
V |
265 | 264 | cnvex 5103 |
. . . . 5
⊢ ◡ AddC ∈ V |
266 | 263, 265 | coex 4751 |
. . . 4
⊢ ((2nd
↾ (◡1st “
{1c})) ∘ ◡ AddC ) ∈ V |
267 | | ssetex 4745 |
. . . . . . . . . . . . 13
⊢ S ∈
V |
268 | 267 | ins3ex 5799 |
. . . . . . . . . . . . . . . . . 18
⊢ Ins3 S ∈ V |
269 | 267 | complex 4105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∼ S ∈
V |
270 | 269 | cnvex 5103 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ◡ ∼ S
∈ V |
271 | 267 | cnvex 5103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ◡ S ∈ V |
272 | 45 | imageex 5802 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} ∈
V |
273 | 267, 272 | coex 4751 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
274 | 273 | fixex 5790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
275 | 271, 274 | resex 5118 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) ∈
V |
276 | 270, 275 | txpex 5786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
277 | 276 | rnex 5108 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
278 | 277 | complex 4105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
279 | 278 | ins2ex 5798 |
. . . . . . . . . . . . . . . . . 18
⊢ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
280 | 268, 279 | symdifex 4109 |
. . . . . . . . . . . . . . . . 17
⊢ ( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) ∈
V |
281 | 280, 125 | imaex 4748 |
. . . . . . . . . . . . . . . 16
⊢ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
282 | 281 | complex 4105 |
. . . . . . . . . . . . . . 15
⊢ ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
283 | 282 | cnvex 5103 |
. . . . . . . . . . . . . 14
⊢ ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
284 | 283 | siex 4754 |
. . . . . . . . . . . . 13
⊢ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
285 | 267, 284 | coex 4751 |
. . . . . . . . . . . 12
⊢ ( S ∘ SI ◡ ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ∈ V |
286 | 285 | cnvex 5103 |
. . . . . . . . . . 11
⊢ ◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ∈ V |
287 | | ncsex 6112 |
. . . . . . . . . . 11
⊢ NC ∈
V |
288 | 286, 287 | resex 5118 |
. . . . . . . . . 10
⊢ (◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∈ V |
289 | 288 | cnvex 5103 |
. . . . . . . . 9
⊢ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∈ V |
290 | 289 | siex 4754 |
. . . . . . . 8
⊢ SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∈ V |
291 | | tcfnex 6245 |
. . . . . . . . . . . . 13
⊢ TcFn ∈ V |
292 | 291 | cnvex 5103 |
. . . . . . . . . . . 12
⊢ ◡TcFn ∈
V |
293 | 292 | siex 4754 |
. . . . . . . . . . 11
⊢ SI ◡TcFn ∈ V |
294 | 293 | siex 4754 |
. . . . . . . . . 10
⊢ SI SI ◡TcFn ∈
V |
295 | 258 | cnvex 5103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ◡2nd ∈ V |
296 | 295, 261 | imaex 4748 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡2nd “
{1c}) ∈ V |
297 | 259, 296 | resex 5118 |
. . . . . . . . . . . . . . . . 17
⊢ (1st
↾ (◡2nd “
{1c})) ∈ V |
298 | 297 | cnvex 5103 |
. . . . . . . . . . . . . . . 16
⊢ ◡(1st ↾ (◡2nd “
{1c})) ∈ V |
299 | 264, 298 | coex 4751 |
. . . . . . . . . . . . . . 15
⊢ ( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∈
V |
300 | | snex 4112 |
. . . . . . . . . . . . . . . . . . 19
⊢
{2c} ∈
V |
301 | 295, 300 | imaex 4748 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡2nd “
{2c}) ∈ V |
302 | 259, 301 | resex 5118 |
. . . . . . . . . . . . . . . . 17
⊢ (1st
↾ (◡2nd “
{2c})) ∈ V |
303 | 302 | cnvex 5103 |
. . . . . . . . . . . . . . . 16
⊢ ◡(1st ↾ (◡2nd “
{2c})) ∈ V |
304 | 264, 303 | coex 4751 |
. . . . . . . . . . . . . . 15
⊢ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))) ∈
V |
305 | 299, 304 | unex 4107 |
. . . . . . . . . . . . . 14
⊢ (( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))) ∈
V |
306 | 305 | cnvex 5103 |
. . . . . . . . . . . . 13
⊢ ◡(( AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c})))) ∈
V |
307 | 292, 306 | coex 4751 |
. . . . . . . . . . . 12
⊢ (◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ∈
V |
308 | | nncex 4397 |
. . . . . . . . . . . 12
⊢ Nn ∈
V |
309 | 307, 308 | resex 5118 |
. . . . . . . . . . 11
⊢ ((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∈
V |
310 | 309, 289 | coex 4751 |
. . . . . . . . . 10
⊢ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC )) ∈ V |
311 | 294, 310 | txpex 5786 |
. . . . . . . . 9
⊢ ( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) ∈ V |
312 | 125 | pw1ex 4304 |
. . . . . . . . 9
⊢ ℘11c ∈ V |
313 | 311, 312 | imaex 4748 |
. . . . . . . 8
⊢ (( SI SI ◡TcFn ⊗ (((◡TcFn ∘
◡(( AddC
∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c) ∈ V |
314 | 290, 313 | difex 4108 |
. . . . . . 7
⊢ ( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) ∈ V |
315 | 287 | pw1ex 4304 |
. . . . . . . . 9
⊢ ℘1 NC
∈ V |
316 | 315 | pw1ex 4304 |
. . . . . . . 8
⊢ ℘1℘1 NC
∈ V |
317 | 316 | pw1ex 4304 |
. . . . . . 7
⊢ ℘1℘1℘1 NC
∈ V |
318 | 314, 317 | imaex 4748 |
. . . . . 6
⊢ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∈ V |
319 | 318 | complex 4105 |
. . . . 5
⊢ ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∈ V |
320 | 319 | uni1ex 4294 |
. . . 4
⊢ ⋃1
∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )
∈ V |
321 | 266, 320 | imaex 4748 |
. . 3
⊢ (((2nd
↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC ))
∈ V |
322 | 257, 321 | unex 4107 |
. 2
⊢ ({t ∣ ¬
≤c We NC } ∪ (((2nd ↾ (◡1st “
{1c})) ∘ ◡ AddC ) “
⋃1 ∼ (( SI ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ) ∖ (( SI SI ◡TcFn
⊗ (((◡TcFn ∘ ◡((
AddC ∘ ◡(1st ↾ (◡2nd “
{1c}))) ∪ ( AddC ∘ ◡(1st ↾ (◡2nd “
{2c}))))) ↾ Nn ) ∘ ◡(◡( S ∘ SI ◡ ∼ (( Ins3
S ⊕ Ins2
∼ ran (◡ ∼ S ⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c)) ↾ NC ))) “
℘11c)) “
℘1℘1℘1 NC )))
∈ V |
323 | 256, 322 | eqeltrri 2424 |
1
⊢ {t ∣ (
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))}
∈ V |