| Step | Hyp | Ref
| Expression |
| 1 | | vex 2863 |
. . . . 5
⊢ t ∈
V |
| 2 | 1 | elcompl 3226 |
. . . 4
⊢ (t ∈ ∼ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
↔ ¬ t ∈ (((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC
)) |
| 3 | | elimapw13 4947 |
. . . . . . 7
⊢ (t ∈ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
↔ ∃m ∈ NC 〈{{{m}}}, t〉 ∈ ((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V))) |
| 4 | | tccl 6161 |
. . . . . . . . . . . . . 14
⊢ (m ∈ NC → Tc
m ∈ NC ) |
| 5 | | spacval 6283 |
. . . . . . . . . . . . . 14
⊢ ( Tc m
∈ NC → (
Spac ‘ Tc m) =
Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 6 | 4, 5 | syl 15 |
. . . . . . . . . . . . 13
⊢ (m ∈ NC → ( Spac
‘ Tc m) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 7 | 6 | nceqd 6111 |
. . . . . . . . . . . 12
⊢ (m ∈ NC → Nc ( Spac ‘ Tc m) =
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 8 | 7 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (m ∈ NC → (t = Nc ( Spac
‘ Tc m) ↔ t =
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) |
| 9 | | finnc 6244 |
. . . . . . . . . . . 12
⊢ (( Spac ‘m) ∈ Fin ↔ Nc ( Spac ‘m) ∈ Nn ) |
| 10 | | spacval 6283 |
. . . . . . . . . . . . 13
⊢ (m ∈ NC → ( Spac
‘m) = Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 11 | 10 | eleq1d 2419 |
. . . . . . . . . . . 12
⊢ (m ∈ NC → (( Spac ‘m) ∈ Fin ↔ Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
| 12 | 9, 11 | syl5bbr 250 |
. . . . . . . . . . 11
⊢ (m ∈ NC → ( Nc ( Spac ‘m) ∈ Nn ↔ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
Fin )) |
| 13 | 8, 12 | imbi12d 311 |
. . . . . . . . . 10
⊢ (m ∈ NC → ((t =
Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn ) ↔ (t =
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ))) |
| 14 | 13 | notbid 285 |
. . . . . . . . 9
⊢ (m ∈ NC → (¬ (t
= Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ¬ (t
= Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ))) |
| 15 | | eldif 3222 |
. . . . . . . . . 10
⊢ (〈{{{m}}},
t〉 ∈ ((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ↔ (〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∧ ¬ 〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V))) |
| 16 | | opelco 4885 |
. . . . . . . . . . . . . 14
⊢ (〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ↔ ∃a({{{m}}} SI SI TcFna ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 17 | | snex 4112 |
. . . . . . . . . . . . . . . . . . 19
⊢ {{m}} ∈
V |
| 18 | 17 | brsnsi1 5776 |
. . . . . . . . . . . . . . . . . 18
⊢ ({{{m}}} SI SI TcFna ↔
∃b(a = {b} ∧ {{m}} SI TcFnb)) |
| 19 | 18 | anbi1i 676 |
. . . . . . . . . . . . . . . . 17
⊢ (({{{m}}} SI SI TcFna ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(∃b(a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 20 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(∃b(a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 21 | 20 | bicomi 193 |
. . . . . . . . . . . . . . . . 17
⊢ ((∃b(a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 22 | 19, 21 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ (({{{m}}} SI SI TcFna ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 23 | 22 | exbii 1582 |
. . . . . . . . . . . . . . 15
⊢ (∃a({{{m}}} SI SI TcFna ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃a∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 24 | | excom 1741 |
. . . . . . . . . . . . . . . 16
⊢ (∃a∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b∃a((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 25 | | anass 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(a = {b} ∧ ({{m}} SI TcFnb ∧ a◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 26 | 25 | exbii 1582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃a((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃a(a = {b} ∧ ({{m}} SI TcFnb ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 27 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {b} ∈
V |
| 28 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (a = {b} →
(a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t ↔
{b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 29 | 28 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (a = {b} →
(({{m}} SI
TcFnb ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
({{m}} SI
TcFnb ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 30 | 27, 29 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃a(a = {b} ∧ ({{m}} SI TcFnb ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) ↔
({{m}} SI
TcFnb ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 31 | 26, 30 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃a((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
({{m}} SI
TcFnb ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 32 | 31 | exbii 1582 |
. . . . . . . . . . . . . . . . 17
⊢ (∃b∃a((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b({{m}} SI TcFnb ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 33 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {m} ∈
V |
| 34 | 33 | brsnsi1 5776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({{m}} SI TcFnb ↔ ∃u(b = {u} ∧ {m}TcFnu)) |
| 35 | 34 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({{m}} SI TcFnb ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(∃u(b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 36 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃u((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(∃u(b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 37 | 35, 36 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({{m}} SI TcFnb ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 38 | 37 | exbii 1582 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃b({{m}} SI TcFnb ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b∃u((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 39 | | excom 1741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃b∃u((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u∃b((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 40 | | anass 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(b = {u} ∧ ({m}TcFnu ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 41 | 40 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃b((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃b(b = {u} ∧ ({m}TcFnu ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 42 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {u} ∈
V |
| 43 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (b = {u} →
{b} = {{u}}) |
| 44 | 43 | breq1d 4650 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (b = {u} →
({b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t ↔
{{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 45 | 44 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (b = {u} →
(({m}TcFnu ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
({m}TcFnu ∧ {{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t))) |
| 46 | 42, 45 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃b(b = {u} ∧ ({m}TcFnu ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) ↔
({m}TcFnu ∧ {{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 47 | 41, 46 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃b((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
({m}TcFnu ∧ {{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 48 | 47 | exbii 1582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃u∃b((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 49 | 39, 48 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃b∃u((b = {u} ∧ {m}TcFnu) ∧ {b}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 50 | 38, 49 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (∃b({{m}} SI TcFnb ∧ {b}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 51 | 32, 50 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ (∃b∃a((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 52 | 24, 51 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (∃a∃b((a = {b} ∧ {{m}} SI TcFnb) ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 53 | 23, 52 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (∃a({{{m}}} SI SI TcFna ∧ a◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 54 | 16, 53 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ↔ ∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t)) |
| 55 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ m ∈
V |
| 56 | 55 | brtcfn 6247 |
. . . . . . . . . . . . . . 15
⊢ ({m}TcFnu ↔
u = Tc m) |
| 57 | | df-br 4641 |
. . . . . . . . . . . . . . . . 17
⊢ ({{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t ↔ 〈{{u}},
t〉 ∈ ◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))) |
| 58 | | opelcnv 4894 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{{u}},
t〉 ∈ ◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ↔ 〈t, {{u}}〉 ∈ (( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))) |
| 59 | | elin 3220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈t, {{u}}〉 ∈ (( NC × V)
∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ↔ (〈t, {{u}}〉 ∈ ( NC × V)
∧ 〈t, {{u}}〉 ∈ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))) |
| 60 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {{u}} ∈
V |
| 61 | | opelxp 4812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈t, {{u}}〉 ∈ ( NC × V)
↔ (t ∈ NC ∧ {{u}} ∈ V)) |
| 62 | 60, 61 | mpbiran2 885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈t, {{u}}〉 ∈ ( NC × V)
↔ t ∈ NC
) |
| 63 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ (b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}} ∧ t◡ S b)) |
| 64 | 42 | brsnsi2 5777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}} ↔ ∃a(b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u})) |
| 65 | 64 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}} ∧ t◡ S b) ↔ (∃a(b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 66 | 63, 65 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ (∃a(b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 67 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃a((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔ (∃a(b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 68 | 66, 67 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ ∃a((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 69 | 68 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃b(t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ ∃b∃a((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 70 | | excom 1741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃b∃a((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔ ∃a∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 71 | 69, 70 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃b(t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ ∃a∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b)) |
| 72 | | anass 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔
(b = {a} ∧ (a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S b))) |
| 73 | 72 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔ ∃b(b = {a} ∧ (a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S b))) |
| 74 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {a} ∈
V |
| 75 | | breq2 4644 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (b = {a} →
(t◡ S b ↔ t◡ S {a})) |
| 76 | 75 | anbi2d 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (b = {a} →
((a ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S b) ↔
(a ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S {a}))) |
| 77 | 74, 76 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃b(b = {a} ∧ (a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S b)) ↔
(a ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S {a})) |
| 78 | 73, 77 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔
(a ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S {a})) |
| 79 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ↔ 〈a, {u}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “
1c)) |
| 80 | | spacvallem1 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} ∈
V |
| 81 | 80, 42 | nchoicelem10 6299 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈a, {u}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ↔
a = Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 82 | 79, 81 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ↔ a =
Clos1 ({u},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 83 | | brcnv 4893 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (t◡ S {a} ↔
{a} S t) |
| 84 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ a ∈
V |
| 85 | 84, 1 | brssetsn 4760 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ({a} S t ↔ a ∈ t) |
| 86 | 83, 85 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (t◡ S {a} ↔
a ∈
t) |
| 87 | 82, 86 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u} ∧ t◡ S {a}) ↔
(a = Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ a ∈ t)) |
| 88 | 78, 87 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔
(a = Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ a ∈ t)) |
| 89 | 88 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃a∃b((b = {a} ∧ a ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){u}) ∧ t◡ S b) ↔ ∃a(a = Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
a ∈
t)) |
| 90 | 71, 89 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃b(t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}}) ↔ ∃a(a = Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
a ∈
t)) |
| 91 | | opelco 4885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈t, {{u}}〉 ∈ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ) ↔ ∃b(t◡ S b ∧ b SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){{u}})) |
| 92 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ t ↔ ∃a(a = Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∧
a ∈
t)) |
| 93 | 90, 91, 92 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈t, {{u}}〉 ∈ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ) ↔ Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ t) |
| 94 | 62, 93 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((〈t, {{u}}〉 ∈ ( NC × V)
∧ 〈t, {{u}}〉 ∈ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ↔ (t
∈ NC ∧ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
t)) |
| 95 | 59, 94 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈t, {{u}}〉 ∈ (( NC × V)
∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ↔ (t
∈ NC ∧ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
t)) |
| 96 | 58, 95 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{{u}},
t〉 ∈ ◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ↔ (t
∈ NC ∧ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
t)) |
| 97 | 57, 96 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ ({{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t ↔
(t ∈
NC ∧ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ t)) |
| 98 | 42, 80 | clos1ex 5877 |
. . . . . . . . . . . . . . . . 17
⊢ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
| 99 | 98 | eqnc2 6130 |
. . . . . . . . . . . . . . . 16
⊢ (t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ↔ (t
∈ NC ∧ Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}) ∈
t)) |
| 100 | 97, 99 | bitr4i 243 |
. . . . . . . . . . . . . . 15
⊢ ({{u}}◡(( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t ↔
t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 101 | 56, 100 | anbi12i 678 |
. . . . . . . . . . . . . 14
⊢ (({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔
(u = Tc m
∧ t =
Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))}))) |
| 102 | 101 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃u({m}TcFnu ∧ {{u}}◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ))t) ↔ ∃u(u = Tc
m ∧
t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) |
| 103 | 54, 102 | bitri 240 |
. . . . . . . . . . . 12
⊢ (〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ↔ ∃u(u = Tc
m ∧
t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) |
| 104 | | tcex 6158 |
. . . . . . . . . . . . 13
⊢ Tc m
∈ V |
| 105 | | sneq 3745 |
. . . . . . . . . . . . . . . 16
⊢ (u = Tc
m → {u} = { Tc
m}) |
| 106 | | clos1eq1 5875 |
. . . . . . . . . . . . . . . 16
⊢ ({u} = { Tc
m} → Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 107 | 105, 106 | syl 15 |
. . . . . . . . . . . . . . 15
⊢ (u = Tc
m → Clos1
({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 108 | 107 | nceqd 6111 |
. . . . . . . . . . . . . 14
⊢ (u = Tc
m → Nc
Clos1 ({u},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 109 | 108 | eqeq2d 2364 |
. . . . . . . . . . . . 13
⊢ (u = Tc
m → (t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ↔ t =
Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) |
| 110 | 104, 109 | ceqsexv 2895 |
. . . . . . . . . . . 12
⊢ (∃u(u = Tc
m ∧
t = Nc Clos1 ({u}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) ↔ t
= Nc Clos1 ({ Tc m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 111 | 103, 110 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ↔
t = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 112 | | df-br 4641 |
. . . . . . . . . . . . . . 15
⊢ (a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m} ↔ 〈a, {m}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “
1c)) |
| 113 | 80, 33 | nchoicelem10 6299 |
. . . . . . . . . . . . . . 15
⊢ (〈a, {m}〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ↔
a = Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 114 | 112, 113 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m} ↔ a =
Clos1 ({m},
{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 115 | 114 | rexbii 2640 |
. . . . . . . . . . . . 13
⊢ (∃a ∈ Fin a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m} ↔ ∃a ∈ Fin a = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))})) |
| 116 | | opelxp 4812 |
. . . . . . . . . . . . . . 15
⊢ (〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ↔ ({{{m}}} ∈ ℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ∧ t ∈
V)) |
| 117 | 1, 116 | mpbiran2 885 |
. . . . . . . . . . . . . 14
⊢ (〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ↔ {{{m}}} ∈ ℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin )) |
| 118 | | snelpw1 4147 |
. . . . . . . . . . . . . . 15
⊢ ({{{m}}} ∈ ℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ↔ {{m}}
∈ ℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin )) |
| 119 | | snelpw1 4147 |
. . . . . . . . . . . . . . . 16
⊢ ({{m}} ∈ ℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ↔ {m}
∈ ( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin )) |
| 120 | | elima 4755 |
. . . . . . . . . . . . . . . 16
⊢ ({m} ∈ ( ∼ ((
Ins3 S ⊕
Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ↔ ∃a ∈ Fin a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m}) |
| 121 | 119, 120 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ ({{m}} ∈ ℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ↔ ∃a ∈ Fin a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m}) |
| 122 | 118, 121 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ ({{{m}}} ∈ ℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ↔ ∃a ∈ Fin a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m}) |
| 123 | 117, 122 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ↔ ∃a ∈ Fin a ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c){m}) |
| 124 | | risset 2662 |
. . . . . . . . . . . . 13
⊢ ( Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ↔ ∃a ∈ Fin a = Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) |
| 125 | 115, 123,
124 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ (〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ↔ Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ) |
| 126 | 125 | notbii 287 |
. . . . . . . . . . 11
⊢ (¬ 〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ↔ ¬
Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ) |
| 127 | 111, 126 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{{{m}}},
t〉 ∈ (◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∧ ¬ 〈{{{m}}},
t〉 ∈ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ↔ (t = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ ¬ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
| 128 | | annim 414 |
. . . . . . . . . 10
⊢ ((t = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∧ ¬ Clos1 ({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin ) ↔ ¬ (t = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
| 129 | 15, 127, 128 | 3bitri 262 |
. . . . . . . . 9
⊢ (〈{{{m}}},
t〉 ∈ ((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ↔ ¬ (t = Nc Clos1 ({ Tc
m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) → Clos1
({m}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈ Fin )) |
| 130 | 14, 129 | syl6rbbr 255 |
. . . . . . . 8
⊢ (m ∈ NC → (〈{{{m}}},
t〉 ∈ ((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ↔ ¬ (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ))) |
| 131 | 130 | rexbiia 2648 |
. . . . . . 7
⊢ (∃m ∈ NC 〈{{{m}}},
t〉 ∈ ((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ↔ ∃m ∈ NC ¬ (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) |
| 132 | 3, 131 | bitri 240 |
. . . . . 6
⊢ (t ∈ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
↔ ∃m ∈ NC ¬ (t = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn )) |
| 133 | | rexnal 2626 |
. . . . . 6
⊢ (∃m ∈ NC ¬ (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ ¬ ∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )) |
| 134 | 132, 133 | bitr2i 241 |
. . . . 5
⊢ (¬ ∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn ) ↔ t ∈ (((◡((
NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC
)) |
| 135 | 134 | con1bii 321 |
. . . 4
⊢ (¬ t ∈ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
↔ ∀m ∈ NC (t = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn )) |
| 136 | 2, 135 | bitri 240 |
. . 3
⊢ (t ∈ ∼ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
↔ ∀m ∈ NC (t = Nc ( Spac
‘ Tc m) → Nc ( Spac ‘m) ∈ Nn )) |
| 137 | 136 | eqabi 2465 |
. 2
⊢ ∼ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC ) =
{t ∣
∀m
∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )} |
| 138 | | ncsex 6112 |
. . . . . . . . 9
⊢ NC ∈
V |
| 139 | | vvex 4110 |
. . . . . . . . 9
⊢ V ∈ V |
| 140 | 138, 139 | xpex 5116 |
. . . . . . . 8
⊢ ( NC × V) ∈
V |
| 141 | | ssetex 4745 |
. . . . . . . . . . . . . 14
⊢ S ∈
V |
| 142 | 141 | ins3ex 5799 |
. . . . . . . . . . . . 13
⊢ Ins3 S ∈ V |
| 143 | 141 | complex 4105 |
. . . . . . . . . . . . . . . . . 18
⊢ ∼ S ∈
V |
| 144 | 143 | cnvex 5103 |
. . . . . . . . . . . . . . . . 17
⊢ ◡ ∼ S
∈ V |
| 145 | 141 | cnvex 5103 |
. . . . . . . . . . . . . . . . . 18
⊢ ◡ S ∈ V |
| 146 | 80 | imageex 5802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} ∈
V |
| 147 | 141, 146 | coex 4751 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
| 148 | 147 | fixex 5790 |
. . . . . . . . . . . . . . . . . 18
⊢ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}) ∈
V |
| 149 | 145, 148 | resex 5118 |
. . . . . . . . . . . . . . . . 17
⊢ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})) ∈
V |
| 150 | 144, 149 | txpex 5786 |
. . . . . . . . . . . . . . . 16
⊢ (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
| 151 | 150 | rnex 5108 |
. . . . . . . . . . . . . . 15
⊢ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
| 152 | 151 | complex 4105 |
. . . . . . . . . . . . . 14
⊢ ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
| 153 | 152 | ins2ex 5798 |
. . . . . . . . . . . . 13
⊢ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))}))) ∈
V |
| 154 | 142, 153 | symdifex 4109 |
. . . . . . . . . . . 12
⊢ ( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) ∈
V |
| 155 | | 1cex 4143 |
. . . . . . . . . . . 12
⊢
1c ∈
V |
| 156 | 154, 155 | imaex 4748 |
. . . . . . . . . . 11
⊢ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
| 157 | 156 | complex 4105 |
. . . . . . . . . 10
⊢ ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
| 158 | 157 | siex 4754 |
. . . . . . . . 9
⊢ SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∈ V |
| 159 | 158, 145 | coex 4751 |
. . . . . . . 8
⊢ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ Image{〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S ) ∈
V |
| 160 | 140, 159 | inex 4106 |
. . . . . . 7
⊢ (( NC × V) ∩ ( SI
∼ (( Ins3 S
⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∈
V |
| 161 | 160 | cnvex 5103 |
. . . . . 6
⊢ ◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∈
V |
| 162 | | tcfnex 6245 |
. . . . . . . 8
⊢ TcFn ∈ V |
| 163 | 162 | siex 4754 |
. . . . . . 7
⊢ SI TcFn ∈
V |
| 164 | 163 | siex 4754 |
. . . . . 6
⊢ SI SI TcFn ∈ V |
| 165 | 161, 164 | coex 4751 |
. . . . 5
⊢ (◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∈ V |
| 166 | | finex 4398 |
. . . . . . . . 9
⊢ Fin ∈
V |
| 167 | 157, 166 | imaex 4748 |
. . . . . . . 8
⊢ ( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ∈
V |
| 168 | 167 | pw1ex 4304 |
. . . . . . 7
⊢ ℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ∈
V |
| 169 | 168 | pw1ex 4304 |
. . . . . 6
⊢ ℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) ∈
V |
| 170 | 169, 139 | xpex 5116 |
. . . . 5
⊢ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V) ∈
V |
| 171 | 165, 170 | difex 4108 |
. . . 4
⊢ ((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) ∈
V |
| 172 | 138 | pw1ex 4304 |
. . . . . 6
⊢ ℘1 NC
∈ V |
| 173 | 172 | pw1ex 4304 |
. . . . 5
⊢ ℘1℘1 NC
∈ V |
| 174 | 173 | pw1ex 4304 |
. . . 4
⊢ ℘1℘1℘1 NC
∈ V |
| 175 | 171, 174 | imaex 4748 |
. . 3
⊢ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
∈ V |
| 176 | 175 | complex 4105 |
. 2
⊢ ∼ (((◡(( NC ×
V) ∩ ( SI ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) ∘ ◡ S )) ∘ SI SI TcFn) ∖ (℘1℘1( ∼ (( Ins3 S ⊕ Ins2 ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
Image{〈x,
y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))})))) “ 1c) “ Fin ) × V)) “ ℘1℘1℘1 NC )
∈ V |
| 177 | 137, 176 | eqeltrri 2424 |
1
⊢ {t ∣ ∀m ∈ NC (t = Nc ( Spac ‘ Tc m)
→ Nc ( Spac ‘m) ∈ Nn )} ∈
V |