NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem11 GIF version

Theorem nchoicelem11 6300
Description: Lemma for nchoice 6309. Set up stratification for nchoicelem12 6301. (Contributed by SF, 18-Mar-2015.)
Assertion
Ref Expression
nchoicelem11 {t m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn )} V
Distinct variable group:   t,m

Proof of Theorem nchoicelem11
Dummy variables a b u x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . 5 t V
21elcompl 3226 . . . 4 (t ∼ ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) ↔ ¬ t ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ))
3 elimapw13 4947 . . . . . . 7 (t ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) ↔ m NC {{{m}}}, t (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)))
4 tccl 6161 . . . . . . . . . . . . . 14 (m NCTc m NC )
5 spacval 6283 . . . . . . . . . . . . . 14 ( Tc m NC → ( SpacTc m) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
64, 5syl 15 . . . . . . . . . . . . 13 (m NC → ( SpacTc m) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
76nceqd 6111 . . . . . . . . . . . 12 (m NCNc ( SpacTc m) = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
87eqeq2d 2364 . . . . . . . . . . 11 (m NC → (t = Nc ( SpacTc m) ↔ t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))})))
9 finnc 6244 . . . . . . . . . . . 12 (( Spacm) FinNc ( Spacm) Nn )
10 spacval 6283 . . . . . . . . . . . . 13 (m NC → ( Spacm) = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
1110eleq1d 2419 . . . . . . . . . . . 12 (m NC → (( Spacm) Fin Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
129, 11syl5bbr 250 . . . . . . . . . . 11 (m NC → ( Nc ( Spacm) Nn Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
138, 12imbi12d 311 . . . . . . . . . 10 (m NC → ((t = Nc ( SpacTc m) → Nc ( Spacm) Nn ) ↔ (t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) → Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin )))
1413notbid 285 . . . . . . . . 9 (m NC → (¬ (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ) ↔ ¬ (t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) → Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin )))
15 eldif 3222 . . . . . . . . . 10 ({{{m}}}, t (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) ↔ ({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ¬ {{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)))
16 opelco 4885 . . . . . . . . . . . . . 14 ({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ↔ a({{{m}}} SI SI TcFna a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
17 snex 4112 . . . . . . . . . . . . . . . . . . 19 {{m}} V
1817brsnsi1 5776 . . . . . . . . . . . . . . . . . 18 ({{{m}}} SI SI TcFnab(a = {b} {{m}} SI TcFnb))
1918anbi1i 676 . . . . . . . . . . . . . . . . 17 (({{{m}}} SI SI TcFna a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (b(a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
20 19.41v 1901 . . . . . . . . . . . . . . . . . 18 (b((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (b(a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
2120bicomi 193 . . . . . . . . . . . . . . . . 17 ((b(a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ b((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
2219, 21bitri 240 . . . . . . . . . . . . . . . 16 (({{{m}}} SI SI TcFna a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ b((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
2322exbii 1582 . . . . . . . . . . . . . . 15 (a({{{m}}} SI SI TcFna a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ab((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
24 excom 1741 . . . . . . . . . . . . . . . 16 (ab((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ba((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
25 anass 630 . . . . . . . . . . . . . . . . . . . 20 (((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (a = {b} ({{m}} SI TcFnb a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
2625exbii 1582 . . . . . . . . . . . . . . . . . . 19 (a((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ a(a = {b} ({{m}} SI TcFnb a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
27 snex 4112 . . . . . . . . . . . . . . . . . . . 20 {b} V
28 breq1 4643 . . . . . . . . . . . . . . . . . . . . 21 (a = {b} → (a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t ↔ {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
2928anbi2d 684 . . . . . . . . . . . . . . . . . . . 20 (a = {b} → (({{m}} SI TcFnb a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
3027, 29ceqsexv 2895 . . . . . . . . . . . . . . . . . . 19 (a(a = {b} ({{m}} SI TcFnb a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)) ↔ ({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
3126, 30bitri 240 . . . . . . . . . . . . . . . . . 18 (a((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
3231exbii 1582 . . . . . . . . . . . . . . . . 17 (ba((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ b({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
33 snex 4112 . . . . . . . . . . . . . . . . . . . . . 22 {m} V
3433brsnsi1 5776 . . . . . . . . . . . . . . . . . . . . 21 ({{m}} SI TcFnbu(b = {u} {m}TcFnu))
3534anbi1i 676 . . . . . . . . . . . . . . . . . . . 20 (({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (u(b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
36 19.41v 1901 . . . . . . . . . . . . . . . . . . . 20 (u((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (u(b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
3735, 36bitr4i 243 . . . . . . . . . . . . . . . . . . 19 (({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
3837exbii 1582 . . . . . . . . . . . . . . . . . 18 (b({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ bu((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
39 excom 1741 . . . . . . . . . . . . . . . . . . 19 (bu((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ub((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
40 anass 630 . . . . . . . . . . . . . . . . . . . . . 22 (((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (b = {u} ({m}TcFnu {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
4140exbii 1582 . . . . . . . . . . . . . . . . . . . . 21 (b((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ b(b = {u} ({m}TcFnu {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
42 snex 4112 . . . . . . . . . . . . . . . . . . . . . 22 {u} V
43 sneq 3745 . . . . . . . . . . . . . . . . . . . . . . . 24 (b = {u} → {b} = {{u}})
4443breq1d 4650 . . . . . . . . . . . . . . . . . . . . . . 23 (b = {u} → ({b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t ↔ {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
4544anbi2d 684 . . . . . . . . . . . . . . . . . . . . . 22 (b = {u} → (({m}TcFnu {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)))
4642, 45ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . 21 (b(b = {u} ({m}TcFnu {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t)) ↔ ({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
4741, 46bitri 240 . . . . . . . . . . . . . . . . . . . 20 (b((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ ({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
4847exbii 1582 . . . . . . . . . . . . . . . . . . 19 (ub((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
4939, 48bitri 240 . . . . . . . . . . . . . . . . . 18 (bu((b = {u} {m}TcFnu) {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
5038, 49bitri 240 . . . . . . . . . . . . . . . . 17 (b({{m}} SI TcFnb {b}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
5132, 50bitri 240 . . . . . . . . . . . . . . . 16 (ba((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
5224, 51bitri 240 . . . . . . . . . . . . . . 15 (ab((a = {b} {{m}} SI TcFnb) a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
5323, 52bitri 240 . . . . . . . . . . . . . 14 (a({{{m}}} SI SI TcFna a(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
5416, 53bitri 240 . . . . . . . . . . . . 13 ({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ↔ u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t))
55 vex 2863 . . . . . . . . . . . . . . . 16 m V
5655brtcfn 6247 . . . . . . . . . . . . . . 15 ({m}TcFnuu = Tc m)
57 df-br 4641 . . . . . . . . . . . . . . . . 17 ({{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t{{u}}, t (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )))
58 opelcnv 4894 . . . . . . . . . . . . . . . . . 18 ({{u}}, t (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) ↔ t, {{u}} (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )))
59 elin 3220 . . . . . . . . . . . . . . . . . . 19 (t, {{u}} (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) ↔ (t, {{u}} ( NC × V) t, {{u}} ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )))
60 snex 4112 . . . . . . . . . . . . . . . . . . . . 21 {{u}} V
61 opelxp 4812 . . . . . . . . . . . . . . . . . . . . 21 (t, {{u}} ( NC × V) ↔ (t NC {{u}} V))
6260, 61mpbiran2 885 . . . . . . . . . . . . . . . . . . . 20 (t, {{u}} ( NC × V) ↔ t NC )
63 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ (b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}} t S b))
6442brsnsi2 5777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}} ↔ a(b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}))
6564anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}} t S b) ↔ (a(b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
6663, 65bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ (a(b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
67 19.41v 1901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (a((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ (a(b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
6866, 67bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ a((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
6968exbii 1582 . . . . . . . . . . . . . . . . . . . . . . 23 (b(t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ ba((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
70 excom 1741 . . . . . . . . . . . . . . . . . . . . . . 23 (ba((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ ab((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
7169, 70bitri 240 . . . . . . . . . . . . . . . . . . . . . 22 (b(t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ ab((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b))
72 anass 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ (b = {a} (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S b)))
7372exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (b((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ b(b = {a} (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S b)))
74 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {a} V
75 breq2 4644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (b = {a} → (t S bt S {a}))
7675anbi2d 684 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (b = {a} → ((a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S b) ↔ (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S {a})))
7774, 76ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . 25 (b(b = {a} (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S b)) ↔ (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S {a}))
7873, 77bitri 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (b((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S {a}))
79 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} ↔ a, {u} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))
80 spacvallem1 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {x, y (x NC y NC y = (2cc x))} V
8180, 42nchoicelem10 6299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (a, {u} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) ↔ a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}))
8279, 81bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} ↔ a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}))
83 brcnv 4893 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (t S {a} ↔ {a} S t)
84 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 a V
8584, 1brssetsn 4760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({a} S ta t)
8683, 85bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (t S {a} ↔ a t)
8782, 86anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . 24 ((a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u} t S {a}) ↔ (a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) a t))
8878, 87bitri 240 . . . . . . . . . . . . . . . . . . . . . . 23 (b((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ (a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) a t))
8988exbii 1582 . . . . . . . . . . . . . . . . . . . . . 22 (ab((b = {a} a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){u}) t S b) ↔ a(a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) a t))
9071, 89bitri 240 . . . . . . . . . . . . . . . . . . . . 21 (b(t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}) ↔ a(a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) a t))
91 opelco 4885 . . . . . . . . . . . . . . . . . . . . 21 (t, {{u}} ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ) ↔ b(t S b b SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){{u}}))
92 df-clel 2349 . . . . . . . . . . . . . . . . . . . . 21 ( Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) ta(a = Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) a t))
9390, 91, 923bitr4i 268 . . . . . . . . . . . . . . . . . . . 20 (t, {{u}} ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ) ↔ Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t)
9462, 93anbi12i 678 . . . . . . . . . . . . . . . . . . 19 ((t, {{u}} ( NC × V) t, {{u}} ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) ↔ (t NC Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t))
9559, 94bitri 240 . . . . . . . . . . . . . . . . . 18 (t, {{u}} (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) ↔ (t NC Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t))
9658, 95bitri 240 . . . . . . . . . . . . . . . . 17 ({{u}}, t (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) ↔ (t NC Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t))
9757, 96bitri 240 . . . . . . . . . . . . . . . 16 ({{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t ↔ (t NC Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t))
9842, 80clos1ex 5877 . . . . . . . . . . . . . . . . 17 Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) V
9998eqnc2 6130 . . . . . . . . . . . . . . . 16 (t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) ↔ (t NC Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) t))
10097, 99bitr4i 243 . . . . . . . . . . . . . . 15 ({{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))tt = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}))
10156, 100anbi12i 678 . . . . . . . . . . . . . 14 (({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ (u = Tc m t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))})))
102101exbii 1582 . . . . . . . . . . . . 13 (u({m}TcFnu {{u}}(( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ))t) ↔ u(u = Tc m t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))})))
10354, 102bitri 240 . . . . . . . . . . . 12 ({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ↔ u(u = Tc m t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))})))
104 tcex 6158 . . . . . . . . . . . . 13 Tc m V
105 sneq 3745 . . . . . . . . . . . . . . . 16 (u = Tc m → {u} = { Tc m})
106 clos1eq1 5875 . . . . . . . . . . . . . . . 16 ({u} = { Tc m} → Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
107105, 106syl 15 . . . . . . . . . . . . . . 15 (u = Tc m Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
108107nceqd 6111 . . . . . . . . . . . . . 14 (u = Tc mNc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
109108eqeq2d 2364 . . . . . . . . . . . . 13 (u = Tc m → (t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))}) ↔ t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))})))
110104, 109ceqsexv 2895 . . . . . . . . . . . 12 (u(u = Tc m t = Nc Clos1 ({u}, {x, y (x NC y NC y = (2cc x))})) ↔ t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
111103, 110bitri 240 . . . . . . . . . . 11 ({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ↔ t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}))
112 df-br 4641 . . . . . . . . . . . . . . 15 (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m} ↔ a, {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c))
11380, 33nchoicelem10 6299 . . . . . . . . . . . . . . 15 (a, {m} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) ↔ a = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
114112, 113bitri 240 . . . . . . . . . . . . . 14 (a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m} ↔ a = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
115114rexbii 2640 . . . . . . . . . . . . 13 (a Fin a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m} ↔ a Fin a = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
116 opelxp 4812 . . . . . . . . . . . . . . 15 ({{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) ↔ ({{{m}}} 11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) t V))
1171, 116mpbiran2 885 . . . . . . . . . . . . . 14 ({{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) ↔ {{{m}}} 11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ))
118 snelpw1 4147 . . . . . . . . . . . . . . 15 ({{{m}}} 11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) ↔ {{m}} 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ))
119 snelpw1 4147 . . . . . . . . . . . . . . . 16 ({{m}} 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) ↔ {m} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ))
120 elima 4755 . . . . . . . . . . . . . . . 16 ({m} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) ↔ a Fin a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m})
121119, 120bitri 240 . . . . . . . . . . . . . . 15 ({{m}} 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) ↔ a Fin a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m})
122118, 121bitri 240 . . . . . . . . . . . . . 14 ({{{m}}} 11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) ↔ a Fin a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m})
123117, 122bitri 240 . . . . . . . . . . . . 13 ({{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) ↔ a Fin a ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c){m})
124 risset 2662 . . . . . . . . . . . . 13 ( Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fina Fin a = Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}))
125115, 123, 1243bitr4i 268 . . . . . . . . . . . 12 ({{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) ↔ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin )
126125notbii 287 . . . . . . . . . . 11 {{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) ↔ ¬ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin )
127111, 126anbi12i 678 . . . . . . . . . 10 (({{{m}}}, t ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) ¬ {{{m}}}, t (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) ↔ (t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) ¬ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
128 annim 414 . . . . . . . . . 10 ((t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) ¬ Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ) ↔ ¬ (t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) → Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
12915, 127, 1283bitri 262 . . . . . . . . 9 ({{{m}}}, t (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) ↔ ¬ (t = Nc Clos1 ({ Tc m}, {x, y (x NC y NC y = (2cc x))}) → Clos1 ({m}, {x, y (x NC y NC y = (2cc x))}) Fin ))
13014, 129syl6rbbr 255 . . . . . . . 8 (m NC → ({{{m}}}, t (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) ↔ ¬ (t = Nc ( SpacTc m) → Nc ( Spacm) Nn )))
131130rexbiia 2648 . . . . . . 7 (m NC {{{m}}}, t (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) ↔ m NC ¬ (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ))
1323, 131bitri 240 . . . . . 6 (t ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) ↔ m NC ¬ (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ))
133 rexnal 2626 . . . . . 6 (m NC ¬ (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ) ↔ ¬ m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ))
134132, 133bitr2i 241 . . . . 5 m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ) ↔ t ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ))
135134con1bii 321 . . . 4 t ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) ↔ m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ))
1362, 135bitri 240 . . 3 (t ∼ ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) ↔ m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn ))
137136abbi2i 2465 . 2 ∼ ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) = {t m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn )}
138 ncsex 6112 . . . . . . . . 9 NC V
139 vvex 4110 . . . . . . . . 9 V V
140138, 139xpex 5116 . . . . . . . 8 ( NC × V) V
141 ssetex 4745 . . . . . . . . . . . . . 14 S V
142141ins3ex 5799 . . . . . . . . . . . . 13 Ins3 S V
143141complex 4105 . . . . . . . . . . . . . . . . . 18 S V
144143cnvex 5103 . . . . . . . . . . . . . . . . 17 S V
145141cnvex 5103 . . . . . . . . . . . . . . . . . 18 S V
14680imageex 5802 . . . . . . . . . . . . . . . . . . . 20 Image{x, y (x NC y NC y = (2cc x))} V
147141, 146coex 4751 . . . . . . . . . . . . . . . . . . 19 ( S Image{x, y (x NC y NC y = (2cc x))}) V
148147fixex 5790 . . . . . . . . . . . . . . . . . 18 Fix ( S Image{x, y (x NC y NC y = (2cc x))}) V
149145, 148resex 5118 . . . . . . . . . . . . . . . . 17 ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})) V
150144, 149txpex 5786 . . . . . . . . . . . . . . . 16 ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
151150rnex 5108 . . . . . . . . . . . . . . 15 ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
152151complex 4105 . . . . . . . . . . . . . 14 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
153152ins2ex 5798 . . . . . . . . . . . . 13 Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))}))) V
154142, 153symdifex 4109 . . . . . . . . . . . 12 ( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) V
155 1cex 4143 . . . . . . . . . . . 12 1c V
156154, 155imaex 4748 . . . . . . . . . . 11 (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
157156complex 4105 . . . . . . . . . 10 ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
158157siex 4754 . . . . . . . . 9 SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) V
159158, 145coex 4751 . . . . . . . 8 ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S ) V
160140, 159inex 4106 . . . . . . 7 (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) V
161160cnvex 5103 . . . . . 6 (( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) V
162 tcfnex 6245 . . . . . . . 8 TcFn V
163162siex 4754 . . . . . . 7 SI TcFn V
164163siex 4754 . . . . . 6 SI SI TcFn V
165161, 164coex 4751 . . . . 5 ((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) V
166 finex 4398 . . . . . . . . 9 Fin V
167157, 166imaex 4748 . . . . . . . 8 ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) V
168167pw1ex 4304 . . . . . . 7 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) V
169168pw1ex 4304 . . . . . 6 11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) V
170169, 139xpex 5116 . . . . 5 (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V) V
171165, 170difex 4108 . . . 4 (((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) V
172138pw1ex 4304 . . . . . 6 1 NC V
173172pw1ex 4304 . . . . 5 11 NC V
174173pw1ex 4304 . . . 4 111 NC V
175171, 174imaex 4748 . . 3 ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) V
176175complex 4105 . 2 ∼ ((((( NC × V) ∩ ( SI ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) S )) SI SI TcFn) (11( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{x, y (x NC y NC y = (2cc x))})))) “ 1c) “ Fin ) × V)) “ 111 NC ) V
177137, 176eqeltrri 2424 1 {t m NC (t = Nc ( SpacTc m) → Nc ( Spacm) Nn )} V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209  csymdif 3210  {csn 3738  1cc1c 4135  1cpw1 4136   Nn cnnc 4374   Fin cfin 4377  cop 4562  {copab 4623   class class class wbr 4640   S csset 4720   SI csi 4721   ccom 4722  cima 4723   × cxp 4771  ccnv 4772  ran crn 4774   cres 4775  cfv 4782  (class class class)co 5526  ctxp 5736   Fix cfix 5740   Ins2 cins2 5750   Ins3 cins3 5752  Imagecimage 5754   Clos1 cclos1 5873   NC cncs 6089   Nc cnc 6092   Tc ctc 6094  2cc2c 6095  c cce 6097  TcFnctcfn 6098   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104  df-2c 6105  df-ce 6107  df-tcfn 6108  df-spac 6275
This theorem is referenced by:  nchoicelem12  6301
  Copyright terms: Public domain W3C validator