NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexdifsn GIF version

Theorem rexdifsn 3844
Description: Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
Assertion
Ref Expression
rexdifsn (x (A {B})φx A (xB φ))

Proof of Theorem rexdifsn
StepHypRef Expression
1 eldifsn 3840 . . . 4 (x (A {B}) ↔ (x A xB))
21anbi1i 676 . . 3 ((x (A {B}) φ) ↔ ((x A xB) φ))
3 anass 630 . . 3 (((x A xB) φ) ↔ (x A (xB φ)))
42, 3bitri 240 . 2 ((x (A {B}) φ) ↔ (x A (xB φ)))
54rexbii2 2644 1 (x (A {B})φx A (xB φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   wcel 1710  wne 2517  wrex 2616   cdif 3207  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-sn 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator