New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reximdva | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
reximdva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) |
Ref | Expression |
---|---|
reximdva | ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (x ∈ A → (ψ → χ))) |
3 | 2 | reximdvai 2725 | 1 ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: sfindbl 4531 dffo4 5424 weds 5939 nenpw1pwlem2 6086 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |