| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > reximdva | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.) | 
| Ref | Expression | 
|---|---|
| reximdva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) | 
| Ref | Expression | 
|---|---|
| reximdva | ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximdva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → (x ∈ A → (ψ → χ))) | 
| 3 | 2 | reximdvai 2725 | 1 ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 | 
| This theorem is referenced by: sfindbl 4531 dffo4 5424 weds 5939 nenpw1pwlem2 6086 nchoicelem19 6308 | 
| Copyright terms: Public domain | W3C validator |