New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbccsbg | GIF version |
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) |
Ref | Expression |
---|---|
sbccsbg | ⊢ (A ∈ V → ([̣A / x]̣φ ↔ y ∈ [A / x]{y ∣ φ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2341 | . . 3 ⊢ (y ∈ {y ∣ φ} ↔ φ) | |
2 | 1 | sbcbii 3102 | . 2 ⊢ ([̣A / x]̣y ∈ {y ∣ φ} ↔ [̣A / x]̣φ) |
3 | sbcel2g 3158 | . 2 ⊢ (A ∈ V → ([̣A / x]̣y ∈ {y ∣ φ} ↔ y ∈ [A / x]{y ∣ φ})) | |
4 | 2, 3 | syl5bbr 250 | 1 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ y ∈ [A / x]{y ∣ φ})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |