| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > csbvarg | GIF version | ||
| Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbvarg | ⊢ (A ∈ V → [A / x]x = A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2868 | . 2 ⊢ (A ∈ V → A ∈ V) | |
| 2 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
| 3 | df-csb 3138 | . . . . . . 7 ⊢ [y / x]x = {z ∣ [̣y / x]̣z ∈ x} | |
| 4 | sbcel2gv 3107 | . . . . . . . 8 ⊢ (y ∈ V → ([̣y / x]̣z ∈ x ↔ z ∈ y)) | |
| 5 | 4 | eqabcdv 2470 | . . . . . . 7 ⊢ (y ∈ V → {z ∣ [̣y / x]̣z ∈ x} = y) |
| 6 | 3, 5 | syl5eq 2397 | . . . . . 6 ⊢ (y ∈ V → [y / x]x = y) |
| 7 | 2, 6 | ax-mp 5 | . . . . 5 ⊢ [y / x]x = y |
| 8 | 7 | csbeq2i 3163 | . . . 4 ⊢ [A / y][y / x]x = [A / y]y |
| 9 | csbco 3146 | . . . 4 ⊢ [A / y][y / x]x = [A / x]x | |
| 10 | df-csb 3138 | . . . 4 ⊢ [A / y]y = {z ∣ [̣A / y]̣z ∈ y} | |
| 11 | 8, 9, 10 | 3eqtr3i 2381 | . . 3 ⊢ [A / x]x = {z ∣ [̣A / y]̣z ∈ y} |
| 12 | sbcel2gv 3107 | . . . 4 ⊢ (A ∈ V → ([̣A / y]̣z ∈ y ↔ z ∈ A)) | |
| 13 | 12 | eqabcdv 2470 | . . 3 ⊢ (A ∈ V → {z ∣ [̣A / y]̣z ∈ y} = A) |
| 14 | 11, 13 | syl5eq 2397 | . 2 ⊢ (A ∈ V → [A / x]x = A) |
| 15 | 1, 14 | syl 15 | 1 ⊢ (A ∈ V → [A / x]x = A) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 [̣wsbc 3047 [csb 3137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
| This theorem is referenced by: sbccsb2g 3166 csbfvg 5339 |
| Copyright terms: Public domain | W3C validator |