NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbccsb2g GIF version

Theorem sbccsb2g 3166
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g (A V → ([̣A / xφA [A / x]{x φ}))

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2341 . . 3 (x {x φ} ↔ φ)
21sbcbii 3102 . 2 ([̣A / xx {x φ} ↔ [̣A / xφ)
3 sbcel12g 3152 . . 3 (A V → ([̣A / xx {x φ} ↔ [A / x]x [A / x]{x φ}))
4 csbvarg 3164 . . . 4 (A V[A / x]x = A)
54eleq1d 2419 . . 3 (A V → ([A / x]x [A / x]{x φ} ↔ A [A / x]{x φ}))
63, 5bitrd 244 . 2 (A V → ([̣A / xx {x φ} ↔ A [A / x]{x φ}))
72, 6syl5bbr 250 1 (A V → ([̣A / xφA [A / x]{x φ}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710  {cab 2339  wsbc 3047  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator