New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbciedf | GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (φ → A ∈ V) |
sbcied.2 | ⊢ ((φ ∧ x = A) → (ψ ↔ χ)) |
sbciedf.3 | ⊢ Ⅎxφ |
sbciedf.4 | ⊢ (φ → Ⅎxχ) |
Ref | Expression |
---|---|
sbciedf | ⊢ (φ → ([̣A / x]̣ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 ⊢ (φ → A ∈ V) | |
2 | sbciedf.4 | . 2 ⊢ (φ → Ⅎxχ) | |
3 | sbciedf.3 | . . 3 ⊢ Ⅎxφ | |
4 | sbcied.2 | . . . 4 ⊢ ((φ ∧ x = A) → (ψ ↔ χ)) | |
5 | 4 | ex 423 | . . 3 ⊢ (φ → (x = A → (ψ ↔ χ))) |
6 | 3, 5 | alrimi 1765 | . 2 ⊢ (φ → ∀x(x = A → (ψ ↔ χ))) |
7 | sbciegft 3077 | . 2 ⊢ ((A ∈ V ∧ Ⅎxχ ∧ ∀x(x = A → (ψ ↔ χ))) → ([̣A / x]̣ψ ↔ χ)) | |
8 | 1, 2, 6, 7 | syl3anc 1182 | 1 ⊢ (φ → ([̣A / x]̣ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbcied 3083 sbc2iegf 3113 csbiebt 3173 sbcnestgf 3184 |
Copyright terms: Public domain | W3C validator |