New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbctt | GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
sbctt | ⊢ ((A ∈ V ∧ Ⅎxφ) → ([̣A / x]̣φ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . . . . 5 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
2 | 1 | bibi1d 310 | . . . 4 ⊢ (y = A → (([y / x]φ ↔ φ) ↔ ([̣A / x]̣φ ↔ φ))) |
3 | 2 | imbi2d 307 | . . 3 ⊢ (y = A → ((Ⅎxφ → ([y / x]φ ↔ φ)) ↔ (Ⅎxφ → ([̣A / x]̣φ ↔ φ)))) |
4 | sbft 2025 | . . 3 ⊢ (Ⅎxφ → ([y / x]φ ↔ φ)) | |
5 | 3, 4 | vtoclg 2915 | . 2 ⊢ (A ∈ V → (Ⅎxφ → ([̣A / x]̣φ ↔ φ))) |
6 | 5 | imp 418 | 1 ⊢ ((A ∈ V ∧ Ⅎxφ) → ([̣A / x]̣φ ↔ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbcgf 3110 csbtt 3149 |
Copyright terms: Public domain | W3C validator |