New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtoclg | GIF version |
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (x = A → (φ ↔ ψ)) |
vtoclg.2 | ⊢ φ |
Ref | Expression |
---|---|
vtoclg | ⊢ (A ∈ V → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | vtoclg.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | vtoclg.2 | . 2 ⊢ φ | |
5 | 1, 2, 3, 4 | vtoclgf 2914 | 1 ⊢ (A ∈ V → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: vtoclbg 2916 ceqex 2970 moeq3 3014 mo2icl 3016 sbctt 3109 sbcnestgf 3184 csbing 3463 csbifg 3691 prnzg 3837 sneqrg 3875 unisng 3909 snex 4112 snel1cg 4142 xpkvexg 4286 cnvkexg 4287 p6exg 4291 sikexg 4297 ins2kexg 4306 ins3kexg 4307 iota5 4360 csbiotag 4372 ssfin 4471 csbopabg 4638 vtoclr 4817 csbima12g 4956 dmsnopg 5067 fconstg 5252 fvelimab 5371 fvi 5443 csbovg 5553 trtxp 5782 oqelins4 5795 fnfullfunlem1 5857 fvfullfun 5865 fundmeng 6045 df1c3g 6142 sbthlem2 6205 frecxp 6315 frecxpg 6316 |
Copyright terms: Public domain | W3C validator |