New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbied | GIF version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2038). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbied.1 | ⊢ Ⅎxφ |
sbied.2 | ⊢ (φ → Ⅎxχ) |
sbied.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
Ref | Expression |
---|---|
sbied | ⊢ (φ → ([y / x]ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1651 | . . . 4 ⊢ ([y / x]ψ → ∃x(x = y ∧ ψ)) | |
2 | sbied.1 | . . . . 5 ⊢ Ⅎxφ | |
3 | sbied.3 | . . . . . . 7 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
4 | bi1 178 | . . . . . . 7 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
5 | 3, 4 | syl6 29 | . . . . . 6 ⊢ (φ → (x = y → (ψ → χ))) |
6 | 5 | imp3a 420 | . . . . 5 ⊢ (φ → ((x = y ∧ ψ) → χ)) |
7 | 2, 6 | eximd 1770 | . . . 4 ⊢ (φ → (∃x(x = y ∧ ψ) → ∃xχ)) |
8 | 1, 7 | syl5 28 | . . 3 ⊢ (φ → ([y / x]ψ → ∃xχ)) |
9 | sbied.2 | . . . 4 ⊢ (φ → Ⅎxχ) | |
10 | 9 | 19.9d 1782 | . . 3 ⊢ (φ → (∃xχ → χ)) |
11 | 8, 10 | syld 40 | . 2 ⊢ (φ → ([y / x]ψ → χ)) |
12 | 9 | nfrd 1763 | . . 3 ⊢ (φ → (χ → ∀xχ)) |
13 | bi2 189 | . . . . . . 7 ⊢ ((ψ ↔ χ) → (χ → ψ)) | |
14 | 3, 13 | syl6 29 | . . . . . 6 ⊢ (φ → (x = y → (χ → ψ))) |
15 | 14 | com23 72 | . . . . 5 ⊢ (φ → (χ → (x = y → ψ))) |
16 | 2, 15 | alimd 1764 | . . . 4 ⊢ (φ → (∀xχ → ∀x(x = y → ψ))) |
17 | sb2 2023 | . . . 4 ⊢ (∀x(x = y → ψ) → [y / x]ψ) | |
18 | 16, 17 | syl6 29 | . . 3 ⊢ (φ → (∀xχ → [y / x]ψ)) |
19 | 12, 18 | syld 40 | . 2 ⊢ (φ → (χ → [y / x]ψ)) |
20 | 11, 19 | impbid 183 | 1 ⊢ (φ → ([y / x]ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbiedv 2037 sbie 2038 dvelimdf 2082 sbco2 2086 |
Copyright terms: Public domain | W3C validator |