| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbied | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2038). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbied.1 | ⊢ Ⅎxφ |
| sbied.2 | ⊢ (φ → Ⅎxχ) |
| sbied.3 | ⊢ (φ → (x = y → (ψ ↔ χ))) |
| Ref | Expression |
|---|---|
| sbied | ⊢ (φ → ([y / x]ψ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb1 1651 | . . . 4 ⊢ ([y / x]ψ → ∃x(x = y ∧ ψ)) | |
| 2 | sbied.1 | . . . . 5 ⊢ Ⅎxφ | |
| 3 | sbied.3 | . . . . . . 7 ⊢ (φ → (x = y → (ψ ↔ χ))) | |
| 4 | bi1 178 | . . . . . . 7 ⊢ ((ψ ↔ χ) → (ψ → χ)) | |
| 5 | 3, 4 | syl6 29 | . . . . . 6 ⊢ (φ → (x = y → (ψ → χ))) |
| 6 | 5 | imp3a 420 | . . . . 5 ⊢ (φ → ((x = y ∧ ψ) → χ)) |
| 7 | 2, 6 | eximd 1770 | . . . 4 ⊢ (φ → (∃x(x = y ∧ ψ) → ∃xχ)) |
| 8 | 1, 7 | syl5 28 | . . 3 ⊢ (φ → ([y / x]ψ → ∃xχ)) |
| 9 | sbied.2 | . . . 4 ⊢ (φ → Ⅎxχ) | |
| 10 | 9 | 19.9d 1782 | . . 3 ⊢ (φ → (∃xχ → χ)) |
| 11 | 8, 10 | syld 40 | . 2 ⊢ (φ → ([y / x]ψ → χ)) |
| 12 | 9 | nfrd 1763 | . . 3 ⊢ (φ → (χ → ∀xχ)) |
| 13 | bi2 189 | . . . . . . 7 ⊢ ((ψ ↔ χ) → (χ → ψ)) | |
| 14 | 3, 13 | syl6 29 | . . . . . 6 ⊢ (φ → (x = y → (χ → ψ))) |
| 15 | 14 | com23 72 | . . . . 5 ⊢ (φ → (χ → (x = y → ψ))) |
| 16 | 2, 15 | alimd 1764 | . . . 4 ⊢ (φ → (∀xχ → ∀x(x = y → ψ))) |
| 17 | sb2 2023 | . . . 4 ⊢ (∀x(x = y → ψ) → [y / x]ψ) | |
| 18 | 16, 17 | syl6 29 | . . 3 ⊢ (φ → (∀xχ → [y / x]ψ)) |
| 19 | 12, 18 | syld 40 | . 2 ⊢ (φ → (χ → [y / x]ψ)) |
| 20 | 11, 19 | impbid 183 | 1 ⊢ (φ → ([y / x]ψ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbiedv 2037 sbie 2038 dvelimdf 2082 sbco2 2086 |
| Copyright terms: Public domain | W3C validator |