New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssun1 | GIF version |
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun1 | ⊢ A ⊆ (A ∪ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 374 | . . 3 ⊢ (x ∈ A → (x ∈ A ∨ x ∈ B)) | |
2 | elun 3221 | . . 3 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
3 | 1, 2 | sylibr 203 | . 2 ⊢ (x ∈ A → x ∈ (A ∪ B)) |
4 | 3 | ssriv 3278 | 1 ⊢ A ⊆ (A ∪ B) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 ∈ wcel 1710 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: ssun2 3428 ssun3 3429 elun1 3431 inabs 3487 reuun1 3538 un00 3587 snsspr1 3857 snsstp1 3859 snsstp2 3860 uniintsn 3964 snprss1 4121 pw1equn 4332 pw1eqadj 4333 evenoddnnnul 4515 sfinltfin 4536 vfinspsslem1 4551 vfinspss 4552 phi011lem1 4599 enadjlem1 6060 ncdisjun 6137 ce0addcnnul 6180 addlec 6209 |
Copyright terms: Public domain | W3C validator |