NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ss0 GIF version

Theorem ss0 3582
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
Assertion
Ref Expression
ss0 (A A = )

Proof of Theorem ss0
StepHypRef Expression
1 ss0b 3581 . 2 (A A = )
21biimpi 186 1 (A A = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  sseq0  3583  abf  3585  eq0rdv  3586  ssdisj  3601  disjpss  3602  0dif  3622  f00  5250  map0b  6025
  Copyright terms: Public domain W3C validator