![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ssdisj | GIF version |
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
ssdisj | ⊢ ((A ⊆ B ∧ (B ∩ C) = ∅) → (A ∩ C) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3580 | . . . 4 ⊢ ((B ∩ C) ⊆ ∅ ↔ (B ∩ C) = ∅) | |
2 | ssrin 3480 | . . . . 5 ⊢ (A ⊆ B → (A ∩ C) ⊆ (B ∩ C)) | |
3 | sstr2 3279 | . . . . 5 ⊢ ((A ∩ C) ⊆ (B ∩ C) → ((B ∩ C) ⊆ ∅ → (A ∩ C) ⊆ ∅)) | |
4 | 2, 3 | syl 15 | . . . 4 ⊢ (A ⊆ B → ((B ∩ C) ⊆ ∅ → (A ∩ C) ⊆ ∅)) |
5 | 1, 4 | syl5bir 209 | . . 3 ⊢ (A ⊆ B → ((B ∩ C) = ∅ → (A ∩ C) ⊆ ∅)) |
6 | 5 | imp 418 | . 2 ⊢ ((A ⊆ B ∧ (B ∩ C) = ∅) → (A ∩ C) ⊆ ∅) |
7 | ss0 3581 | . 2 ⊢ ((A ∩ C) ⊆ ∅ → (A ∩ C) = ∅) | |
8 | 6, 7 | syl 15 | 1 ⊢ ((A ⊆ B ∧ (B ∩ C) = ∅) → (A ∩ C) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∩ cin 3208 ⊆ wss 3257 ∅c0 3550 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: fimacnvdisj 5244 |
Copyright terms: Public domain | W3C validator |