NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssdisj GIF version

Theorem ssdisj 3601
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
ssdisj ((A B (BC) = ) → (AC) = )

Proof of Theorem ssdisj
StepHypRef Expression
1 ss0b 3581 . . . 4 ((BC) ↔ (BC) = )
2 ssrin 3481 . . . . 5 (A B → (AC) (BC))
3 sstr2 3280 . . . . 5 ((AC) (BC) → ((BC) → (AC) ))
42, 3syl 15 . . . 4 (A B → ((BC) → (AC) ))
51, 4syl5bir 209 . . 3 (A B → ((BC) = → (AC) ))
65imp 418 . 2 ((A B (BC) = ) → (AC) )
7 ss0 3582 . 2 ((AC) → (AC) = )
86, 7syl 15 1 ((A B (BC) = ) → (AC) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  cin 3209   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  fimacnvdisj  5245
  Copyright terms: Public domain W3C validator