NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ss0b GIF version

Theorem ss0b 3581
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b (A A = )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3580 . . 3 A
2 eqss 3288 . . 3 (A = ↔ (A A))
31, 2mpbiran2 885 . 2 (A = A )
43bicomi 193 1 (A A = )
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  ss0  3582  un00  3587  ssdisj  3601  pw0  4161  ssfin  4471
  Copyright terms: Public domain W3C validator