NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssindif0 GIF version

Theorem ssindif0 3605
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0 (A B ↔ (A ∩ (V B)) = )

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 3599 . 2 ((A ∩ (V B)) = A (V (V B)))
2 ddif 3399 . . 3 (V (V B)) = B
32sseq2i 3297 . 2 (A (V (V B)) ↔ A B)
41, 3bitr2i 241 1 (A B ↔ (A ∩ (V B)) = )
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  Vcvv 2860   cdif 3207  cin 3209   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator