New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ddif | GIF version |
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ddif | ⊢ (V ∖ (V ∖ A)) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . 5 ⊢ x ∈ V | |
2 | eldif 3221 | . . . . 5 ⊢ (x ∈ (V ∖ A) ↔ (x ∈ V ∧ ¬ x ∈ A)) | |
3 | 1, 2 | mpbiran 884 | . . . 4 ⊢ (x ∈ (V ∖ A) ↔ ¬ x ∈ A) |
4 | 3 | con2bii 322 | . . 3 ⊢ (x ∈ A ↔ ¬ x ∈ (V ∖ A)) |
5 | 1 | biantrur 492 | . . 3 ⊢ (¬ x ∈ (V ∖ A) ↔ (x ∈ V ∧ ¬ x ∈ (V ∖ A))) |
6 | 4, 5 | bitr2i 241 | . 2 ⊢ ((x ∈ V ∧ ¬ x ∈ (V ∖ A)) ↔ x ∈ A) |
7 | 6 | difeqri 3387 | 1 ⊢ (V ∖ (V ∖ A)) = A |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∖ cdif 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 |
This theorem is referenced by: dfun3 3493 dfin3 3494 invdif 3496 ssindif0 3604 difdifdir 3637 |
Copyright terms: Public domain | W3C validator |