New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssopab2dv | GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
ssopab2dv.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
ssopab2dv | ⊢ (φ → {〈x, y〉 ∣ ψ} ⊆ {〈x, y〉 ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2dv.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | alrimivv 1632 | . 2 ⊢ (φ → ∀x∀y(ψ → χ)) |
3 | ssopab2 4713 | . 2 ⊢ (∀x∀y(ψ → χ) → {〈x, y〉 ∣ ψ} ⊆ {〈x, y〉 ∣ χ}) | |
4 | 2, 3 | syl 15 | 1 ⊢ (φ → {〈x, y〉 ∣ ψ} ⊆ {〈x, y〉 ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ⊆ wss 3258 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 |
This theorem is referenced by: xpss12 4856 coss1 4873 coss2 4874 cnvss 4886 |
Copyright terms: Public domain | W3C validator |