NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opabn0 GIF version

Theorem opabn0 4717
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
opabn0 ({x, y φ} ≠ xyφ)

Proof of Theorem opabn0
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 n0 3560 . 2 ({x, y φ} ≠ z z {x, y φ})
2 elopab 4697 . . 3 (z {x, y φ} ↔ xy(z = x, y φ))
32exbii 1582 . 2 (z z {x, y φ} ↔ zxy(z = x, y φ))
4 exrot3 1744 . . 3 (zxy(z = x, y φ) ↔ xyz(z = x, y φ))
5 vex 2863 . . . . . . 7 x V
6 vex 2863 . . . . . . 7 y V
75, 6opex 4589 . . . . . 6 x, y V
87isseti 2866 . . . . 5 z z = x, y
9 19.41v 1901 . . . . 5 (z(z = x, y φ) ↔ (z z = x, y φ))
108, 9mpbiran 884 . . . 4 (z(z = x, y φ) ↔ φ)
11102exbii 1583 . . 3 (xyz(z = x, y φ) ↔ xyφ)
124, 11bitri 240 . 2 (zxy(z = x, y φ) ↔ xyφ)
131, 3, 123bitri 262 1 ({x, y φ} ≠ xyφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wne 2517  c0 3551  cop 4562  {copab 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator