New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sstr | GIF version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((A ⊆ B ∧ B ⊆ C) → A ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3280 | . 2 ⊢ (A ⊆ B → (B ⊆ C → A ⊆ C)) | |
2 | 1 | imp 418 | 1 ⊢ ((A ⊆ B ∧ B ⊆ C) → A ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sstrd 3283 sylan9ss 3286 ssdifss 3398 uneqin 3507 sspw1 4336 ssrnres 5060 fco 5232 fssres 5239 ssetpov 5945 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |