New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6ss | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
syl6ss.1 | ⊢ (φ → A ⊆ B) |
syl6ss.2 | ⊢ B ⊆ C |
Ref | Expression |
---|---|
syl6ss | ⊢ (φ → A ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ss.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | syl6ss.2 | . . 3 ⊢ B ⊆ C | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → B ⊆ C) |
4 | 1, 3 | sstrd 3283 | 1 ⊢ (φ → A ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: difss2 3396 rintn0 4057 pw1equn 4332 pw1eqadj 4333 peano5 4410 spfininduct 4541 vfinncvntsp 4550 vfinspsslem1 4551 vfinncsp 4555 ssxpb 5056 funssxp 5234 dff2 5420 dff3 5421 dff4 5422 clos1induct 5881 dmfrec 6317 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |