| Step | Hyp | Ref
| Expression |
| 1 | | ncaddccl 6145 |
. . 3
⊢ ((B ∈ NC ∧ C ∈ NC ) → (B
+c C) ∈ NC
) |
| 2 | 1 | 3adant1 973 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (B
+c C) ∈ NC
) |
| 3 | | elncs 6120 |
. . 3
⊢ ((B +c C) ∈ NC ↔ ∃x(B
+c C) = Nc x) |
| 4 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
| 5 | 4 | ncid 6124 |
. . . . . 6
⊢ x ∈ Nc x |
| 6 | | eleq2 2414 |
. . . . . 6
⊢ ((B +c C) = Nc x → (x
∈ (B
+c C) ↔ x ∈ Nc x)) |
| 7 | 5, 6 | mpbiri 224 |
. . . . 5
⊢ ((B +c C) = Nc x → x ∈ (B
+c C)) |
| 8 | | eladdc 4399 |
. . . . . 6
⊢ (x ∈ (B +c C) ↔ ∃y ∈ B ∃z ∈ C ((y ∩ z) =
∅ ∧
x = (y
∪ z))) |
| 9 | | ncseqnc 6129 |
. . . . . . . . . 10
⊢ (B ∈ NC → (B = Nc y ↔ y ∈ B)) |
| 10 | | ncseqnc 6129 |
. . . . . . . . . 10
⊢ (C ∈ NC → (C = Nc z ↔ z ∈ C)) |
| 11 | 9, 10 | bi2anan9 843 |
. . . . . . . . 9
⊢ ((B ∈ NC ∧ C ∈ NC ) → ((B =
Nc y ∧ C = Nc z) ↔
(y ∈
B ∧
z ∈
C))) |
| 12 | 11 | 3adant1 973 |
. . . . . . . 8
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((B =
Nc y ∧ C = Nc z) ↔
(y ∈
B ∧
z ∈
C))) |
| 13 | | elncs 6120 |
. . . . . . . . . . . 12
⊢ (A ∈ NC ↔ ∃x A = Nc x) |
| 14 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ y ∈
V |
| 15 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ z ∈
V |
| 16 | 14, 15 | ncdisjun 6137 |
. . . . . . . . . . . . . . . 16
⊢ ((y ∩ z) =
∅ → Nc
(y ∪ z) = ( Nc y +c Nc z)) |
| 17 | 16 | oveq2d 5539 |
. . . . . . . . . . . . . . 15
⊢ ((y ∩ z) =
∅ → ( Nc
x ·c Nc (y ∪ z)) = ( Nc x ·c ( Nc y
+c Nc z))) |
| 18 | | xpdisj2 5049 |
. . . . . . . . . . . . . . . . 17
⊢ ((y ∩ z) =
∅ → ((x × y)
∩ (x × z)) = ∅) |
| 19 | 4, 14 | xpex 5116 |
. . . . . . . . . . . . . . . . . 18
⊢ (x × y)
∈ V |
| 20 | 4, 15 | xpex 5116 |
. . . . . . . . . . . . . . . . . 18
⊢ (x × z)
∈ V |
| 21 | 19, 20 | ncdisjun 6137 |
. . . . . . . . . . . . . . . . 17
⊢ (((x × y)
∩ (x × z)) = ∅ →
Nc ((x ×
y) ∪ (x × z)) =
( Nc (x
× y) +c Nc (x ×
z))) |
| 22 | 18, 21 | syl 15 |
. . . . . . . . . . . . . . . 16
⊢ ((y ∩ z) =
∅ → Nc
((x × y) ∪ (x
× z)) = ( Nc (x ×
y) +c Nc (x ×
z))) |
| 23 | 14, 15 | unex 4107 |
. . . . . . . . . . . . . . . . . 18
⊢ (y ∪ z) ∈ V |
| 24 | 4, 23 | mucnc 6132 |
. . . . . . . . . . . . . . . . 17
⊢ ( Nc x
·c Nc (y ∪ z)) =
Nc (x ×
(y ∪ z)) |
| 25 | | xpundi 4833 |
. . . . . . . . . . . . . . . . . 18
⊢ (x × (y
∪ z)) = ((x × y)
∪ (x × z)) |
| 26 | 25 | nceqi 6110 |
. . . . . . . . . . . . . . . . 17
⊢ Nc (x ×
(y ∪ z)) = Nc ((x × y)
∪ (x × z)) |
| 27 | 24, 26 | eqtri 2373 |
. . . . . . . . . . . . . . . 16
⊢ ( Nc x
·c Nc (y ∪ z)) =
Nc ((x ×
y) ∪ (x × z)) |
| 28 | 4, 14 | mucnc 6132 |
. . . . . . . . . . . . . . . . 17
⊢ ( Nc x
·c Nc y) = Nc (x × y) |
| 29 | 4, 15 | mucnc 6132 |
. . . . . . . . . . . . . . . . 17
⊢ ( Nc x
·c Nc z) = Nc (x × z) |
| 30 | 28, 29 | addceq12i 4389 |
. . . . . . . . . . . . . . . 16
⊢ (( Nc x
·c Nc y) +c ( Nc x
·c Nc z)) = ( Nc (x × y)
+c Nc (x × z)) |
| 31 | 22, 27, 30 | 3eqtr4g 2410 |
. . . . . . . . . . . . . . 15
⊢ ((y ∩ z) =
∅ → ( Nc
x ·c Nc (y ∪ z)) = (( Nc x ·c Nc y)
+c ( Nc x ·c Nc z))) |
| 32 | 17, 31 | eqtr3d 2387 |
. . . . . . . . . . . . . 14
⊢ ((y ∩ z) =
∅ → ( Nc
x ·c ( Nc y
+c Nc z)) = (( Nc x ·c Nc y)
+c ( Nc x ·c Nc z))) |
| 33 | | oveq1 5531 |
. . . . . . . . . . . . . . 15
⊢ (A = Nc x → (A
·c ( Nc y +c Nc z)) = ( Nc x
·c ( Nc y +c Nc z))) |
| 34 | | oveq1 5531 |
. . . . . . . . . . . . . . . 16
⊢ (A = Nc x → (A
·c Nc y) = ( Nc x ·c Nc y)) |
| 35 | | oveq1 5531 |
. . . . . . . . . . . . . . . 16
⊢ (A = Nc x → (A
·c Nc z) = ( Nc x ·c Nc z)) |
| 36 | 34, 35 | addceq12d 4392 |
. . . . . . . . . . . . . . 15
⊢ (A = Nc x → ((A
·c Nc y) +c (A ·c Nc z)) = (( Nc x
·c Nc y) +c ( Nc x
·c Nc z))) |
| 37 | 33, 36 | eqeq12d 2367 |
. . . . . . . . . . . . . 14
⊢ (A = Nc x → ((A
·c ( Nc y +c Nc z)) = ((A ·c Nc y)
+c (A
·c Nc z)) ↔ ( Nc
x ·c ( Nc y
+c Nc z)) = (( Nc x ·c Nc y)
+c ( Nc x ·c Nc z)))) |
| 38 | 32, 37 | syl5ibr 212 |
. . . . . . . . . . . . 13
⊢ (A = Nc x → ((y
∩ z) = ∅ → (A
·c ( Nc y +c Nc z)) = ((A ·c Nc y)
+c (A
·c Nc z)))) |
| 39 | 38 | exlimiv 1634 |
. . . . . . . . . . . 12
⊢ (∃x A = Nc x → ((y
∩ z) = ∅ → (A
·c ( Nc y +c Nc z)) = ((A ·c Nc y)
+c (A
·c Nc z)))) |
| 40 | 13, 39 | sylbi 187 |
. . . . . . . . . . 11
⊢ (A ∈ NC → ((y ∩
z) = ∅
→ (A ·c (
Nc y
+c Nc z)) = ((A
·c Nc y) +c (A ·c Nc z)))) |
| 41 | 40 | adantrd 454 |
. . . . . . . . . 10
⊢ (A ∈ NC → (((y ∩
z) = ∅
∧ x =
(y ∪ z)) → (A
·c ( Nc y +c Nc z)) = ((A ·c Nc y)
+c (A
·c Nc z)))) |
| 42 | | addceq12 4386 |
. . . . . . . . . . . . 13
⊢ ((B = Nc y ∧ C = Nc z) → (B
+c C) = ( Nc y
+c Nc z)) |
| 43 | 42 | oveq2d 5539 |
. . . . . . . . . . . 12
⊢ ((B = Nc y ∧ C = Nc z) → (A
·c (B
+c C)) = (A ·c ( Nc y
+c Nc z))) |
| 44 | | oveq2 5532 |
. . . . . . . . . . . . . 14
⊢ (B = Nc y → (A
·c B) = (A ·c Nc y)) |
| 45 | 44 | adantr 451 |
. . . . . . . . . . . . 13
⊢ ((B = Nc y ∧ C = Nc z) → (A
·c B) = (A ·c Nc y)) |
| 46 | | oveq2 5532 |
. . . . . . . . . . . . . 14
⊢ (C = Nc z → (A
·c C) = (A ·c Nc z)) |
| 47 | 46 | adantl 452 |
. . . . . . . . . . . . 13
⊢ ((B = Nc y ∧ C = Nc z) → (A
·c C) = (A ·c Nc z)) |
| 48 | 45, 47 | addceq12d 4392 |
. . . . . . . . . . . 12
⊢ ((B = Nc y ∧ C = Nc z) → ((A
·c B)
+c (A
·c C)) =
((A ·c Nc y)
+c (A
·c Nc z))) |
| 49 | 43, 48 | eqeq12d 2367 |
. . . . . . . . . . 11
⊢ ((B = Nc y ∧ C = Nc z) → ((A
·c (B
+c C)) = ((A ·c B) +c (A ·c C)) ↔ (A
·c ( Nc y +c Nc z)) = ((A ·c Nc y)
+c (A
·c Nc z)))) |
| 50 | 49 | imbi2d 307 |
. . . . . . . . . 10
⊢ ((B = Nc y ∧ C = Nc z) → ((((y
∩ z) = ∅ ∧ x = (y ∪
z)) → (A ·c (B +c C)) = ((A
·c B)
+c (A
·c C))) ↔
(((y ∩ z) = ∅ ∧ x = (y ∪ z))
→ (A ·c (
Nc y
+c Nc z)) = ((A
·c Nc y) +c (A ·c Nc z))))) |
| 51 | 41, 50 | syl5ibrcom 213 |
. . . . . . . . 9
⊢ (A ∈ NC → ((B =
Nc y ∧ C = Nc z) →
(((y ∩ z) = ∅ ∧ x = (y ∪ z))
→ (A ·c
(B +c C)) = ((A
·c B)
+c (A
·c C))))) |
| 52 | 51 | 3ad2ant1 976 |
. . . . . . . 8
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((B =
Nc y ∧ C = Nc z) →
(((y ∩ z) = ∅ ∧ x = (y ∪ z))
→ (A ·c
(B +c C)) = ((A
·c B)
+c (A
·c C))))) |
| 53 | 12, 52 | sylbird 226 |
. . . . . . 7
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((y
∈ B ∧ z ∈ C) →
(((y ∩ z) = ∅ ∧ x = (y ∪ z))
→ (A ·c
(B +c C)) = ((A
·c B)
+c (A
·c C))))) |
| 54 | 53 | rexlimdvv 2745 |
. . . . . 6
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (∃y ∈ B ∃z ∈ C ((y ∩ z) =
∅ ∧
x = (y
∪ z)) → (A ·c (B +c C)) = ((A
·c B)
+c (A
·c C)))) |
| 55 | 8, 54 | syl5bi 208 |
. . . . 5
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (x ∈ (B
+c C) → (A ·c (B +c C)) = ((A
·c B)
+c (A
·c C)))) |
| 56 | 7, 55 | syl5 28 |
. . . 4
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((B
+c C) = Nc x →
(A ·c (B +c C)) = ((A
·c B)
+c (A
·c C)))) |
| 57 | 56 | exlimdv 1636 |
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (∃x(B +c C) = Nc x → (A
·c (B
+c C)) = ((A ·c B) +c (A ·c C)))) |
| 58 | 3, 57 | syl5bi 208 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((B
+c C) ∈ NC → (A ·c (B +c C)) = ((A
·c B)
+c (A
·c C)))) |
| 59 | 2, 58 | mpd 14 |
1
⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (A
·c (B
+c C)) = ((A ·c B) +c (A ·c C))) |