![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > erref | GIF version |
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by set.mm contributors, 6-May-2013.) |
Ref | Expression |
---|---|
erref.1 | ⊢ (φ → R Er V) |
erref.2 | ⊢ (φ → dom R = A) |
erref.3 | ⊢ (φ → X ∈ A) |
Ref | Expression |
---|---|
erref | ⊢ (φ → XRX) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erref.3 | . 2 ⊢ (φ → X ∈ A) | |
2 | erref.2 | . . . 4 ⊢ (φ → dom R = A) | |
3 | 2 | eleq2d 2420 | . . 3 ⊢ (φ → (X ∈ dom R ↔ X ∈ A)) |
4 | eldm 4898 | . . . 4 ⊢ (X ∈ dom R ↔ ∃y XRy) | |
5 | erref.1 | . . . . . . . 8 ⊢ (φ → R Er V) | |
6 | 5 | adantr 451 | . . . . . . 7 ⊢ ((φ ∧ XRy) → R Er V) |
7 | elex 2867 | . . . . . . . . 9 ⊢ (X ∈ A → X ∈ V) | |
8 | 1, 7 | syl 15 | . . . . . . . 8 ⊢ (φ → X ∈ V) |
9 | 8 | adantr 451 | . . . . . . 7 ⊢ ((φ ∧ XRy) → X ∈ V) |
10 | vex 2862 | . . . . . . . 8 ⊢ y ∈ V | |
11 | 10 | a1i 10 | . . . . . . 7 ⊢ ((φ ∧ XRy) → y ∈ V) |
12 | simpr 447 | . . . . . . 7 ⊢ ((φ ∧ XRy) → XRy) | |
13 | 6, 9, 11, 9, 12, 12 | ertr4d 5958 | . . . . . 6 ⊢ ((φ ∧ XRy) → XRX) |
14 | 13 | ex 423 | . . . . 5 ⊢ (φ → (XRy → XRX)) |
15 | 14 | exlimdv 1636 | . . . 4 ⊢ (φ → (∃y XRy → XRX)) |
16 | 4, 15 | syl5bi 208 | . . 3 ⊢ (φ → (X ∈ dom R → XRX)) |
17 | 3, 16 | sylbird 226 | . 2 ⊢ (φ → (X ∈ A → XRX)) |
18 | 1, 17 | mpd 14 | 1 ⊢ (φ → XRX) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2859 class class class wbr 4639 dom cdm 4772 Er cer 5898 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 df-trans 5899 df-sym 5908 df-er 5909 |
This theorem is referenced by: erth 5968 |
Copyright terms: Public domain | W3C validator |