| Step | Hyp | Ref
 | Expression | 
| 1 |   | ce0t 6233 | 
. . . 4
⊢ ((N ∈ NC ∧ (N ↑c 0c)
∈ NC ) →
∃p ∈ NC N = Tc
p) | 
| 2 | 1 | 3adant1 973 | 
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) →
∃p ∈ NC N = Tc
p) | 
| 3 | 2 | adantr 451 | 
. 2
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) → ∃p ∈ NC N = Tc
p) | 
| 4 |   | letc 6232 | 
. . . . . . . . 9
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ ∃q ∈ NC M = Tc q) | 
| 5 |   | tlecg 6231 | 
. . . . . . . . . . . . . . . . 17
⊢ ((q ∈ NC ∧ p ∈ NC ) → (q
≤c p ↔ Tc q
≤c Tc p)) | 
| 6 | 5 | ancoms 439 | 
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ q ∈ NC ) → (q
≤c p ↔ Tc q
≤c Tc p)) | 
| 7 |   | elncs 6120 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (q ∈ NC ↔ ∃x q = Nc x) | 
| 8 |   | elncs 6120 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (p ∈ NC ↔ ∃y p = Nc y) | 
| 9 | 7, 8 | anbi12i 678 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((q ∈ NC ∧ p ∈ NC ) ↔ (∃x q = Nc x ∧ ∃y p = Nc y)) | 
| 10 |   | eeanv 1913 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (∃x∃y(q = Nc x ∧ p = Nc y) ↔ (∃x q = Nc x ∧ ∃y p = Nc y)) | 
| 11 | 9, 10 | bitr4i 243 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((q ∈ NC ∧ p ∈ NC ) ↔ ∃x∃y(q = Nc x ∧ p = Nc y)) | 
| 12 |   | enpw 6088 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p ≈ x
→ ℘p ≈ ℘x) | 
| 13 |   | elnc 6126 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p ∈ Nc x ↔ p ≈ x) | 
| 14 |   | elnc 6126 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (℘p ∈ Nc ℘x ↔
℘p
≈ ℘x) | 
| 15 | 12, 13, 14 | 3imtr4i 257 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (p ∈ Nc x → ℘p ∈ Nc ℘x) | 
| 16 | 15 | adantr 451 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → ℘p ∈ Nc ℘x) | 
| 17 | 16 | adantr 451 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘p ∈ Nc ℘x) | 
| 18 |   | enpw 6088 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (q ≈ y
→ ℘q ≈ ℘y) | 
| 19 |   | elnc 6126 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (q ∈ Nc y ↔ q ≈ y) | 
| 20 |   | elnc 6126 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (℘q ∈ Nc ℘y ↔
℘q
≈ ℘y) | 
| 21 | 18, 19, 20 | 3imtr4i 257 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (q ∈ Nc y → ℘q ∈ Nc ℘y) | 
| 22 | 21 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → ℘q ∈ Nc ℘y) | 
| 23 | 22 | adantr 451 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘q ∈ Nc ℘y) | 
| 24 |   | sspwb 4119 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (p ⊆ q ↔ ℘p ⊆ ℘q) | 
| 25 | 24 | biimpi 186 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (p ⊆ q → ℘p ⊆ ℘q) | 
| 26 | 25 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘p ⊆ ℘q) | 
| 27 |   | sseq1 3293 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (r = ℘p → (r
⊆ s
↔ ℘p ⊆ s)) | 
| 28 |   | sseq2 3294 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (s = ℘q → (℘p ⊆ s ↔
℘p
⊆ ℘q)) | 
| 29 | 27, 28 | rspc2ev 2964 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((℘p ∈ Nc ℘x ∧ ℘q ∈ Nc ℘y ∧ ℘p ⊆ ℘q) → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) | 
| 30 | 17, 23, 26, 29 | syl3anc 1182 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) | 
| 31 | 30 | ex 423 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → (p
⊆ q
→ ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s)) | 
| 32 | 31 | rexlimivv 2744 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃p ∈ Nc x∃q ∈ Nc yp ⊆ q → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) | 
| 33 |   | ncex 6118 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢  Nc x ∈ V | 
| 34 |   | ncex 6118 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢  Nc y ∈ V | 
| 35 | 33, 34 | brlec 6114 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Nc x
≤c Nc y ↔ ∃p ∈ Nc x∃q ∈ Nc yp ⊆ q) | 
| 36 |   | ncex 6118 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢  Nc ℘x ∈
V | 
| 37 |   | ncex 6118 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢  Nc ℘y ∈
V | 
| 38 | 36, 37 | brlec 6114 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Nc ℘x ≤c Nc
℘y
↔ ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) | 
| 39 | 32, 35, 38 | 3imtr4i 257 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( Nc x
≤c Nc y → Nc ℘x
≤c Nc ℘y) | 
| 40 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ x ∈
V | 
| 41 | 40 | tcnc 6226 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢  Tc Nc x = Nc ℘1x | 
| 42 | 40 | ce2 6193 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Tc Nc x = Nc ℘1x → (2c
↑c Tc Nc x) = Nc ℘x) | 
| 43 | 41, 42 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2c ↑c Tc Nc x) = Nc ℘x | 
| 44 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ y ∈
V | 
| 45 | 44 | tcnc 6226 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢  Tc Nc y = Nc ℘1y | 
| 46 | 44 | ce2 6193 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Tc Nc y = Nc ℘1y → (2c
↑c Tc Nc y) = Nc ℘y) | 
| 47 | 45, 46 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2c ↑c Tc Nc y) = Nc ℘y | 
| 48 | 39, 43, 47 | 3brtr4g 4672 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Nc x
≤c Nc y → (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y)) | 
| 49 |   | breq12 4645 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((q = Nc x ∧ p = Nc y) → (q
≤c p ↔ Nc x
≤c Nc y)) | 
| 50 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (q = Nc x → Tc
q = Tc Nc x) | 
| 51 | 50 | oveq2d 5539 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (q = Nc x → (2c
↑c Tc q) = (2c ↑c
Tc Nc
x)) | 
| 52 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (p = Nc y → Tc
p = Tc Nc y) | 
| 53 | 52 | oveq2d 5539 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (p = Nc y → (2c
↑c Tc p) = (2c ↑c
Tc Nc
y)) | 
| 54 | 51, 53 | breqan12d 4655 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((q = Nc x ∧ p = Nc y) → ((2c
↑c Tc q) ≤c (2c
↑c Tc p) ↔ (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y))) | 
| 55 | 49, 54 | imbi12d 311 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((q = Nc x ∧ p = Nc y) → ((q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))
↔ ( Nc x
≤c Nc y → (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y)))) | 
| 56 | 48, 55 | mpbiri 224 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((q = Nc x ∧ p = Nc y) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 57 | 56 | exlimivv 1635 | 
. . . . . . . . . . . . . . . . . 18
⊢ (∃x∃y(q = Nc x ∧ p = Nc y) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 58 | 11, 57 | sylbi 187 | 
. . . . . . . . . . . . . . . . 17
⊢ ((q ∈ NC ∧ p ∈ NC ) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 59 | 58 | ancoms 439 | 
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ q ∈ NC ) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 60 | 6, 59 | sylbird 226 | 
. . . . . . . . . . . . . . 15
⊢ ((p ∈ NC ∧ q ∈ NC ) → ( Tc
q ≤c Tc p
→ (2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 61 | 60 | imp 418 | 
. . . . . . . . . . . . . 14
⊢ (((p ∈ NC ∧ q ∈ NC ) ∧ Tc q
≤c Tc p) → (2c
↑c Tc q) ≤c (2c
↑c Tc p)) | 
| 62 | 61 | an32s 779 | 
. . . . . . . . . . . . 13
⊢ (((p ∈ NC ∧ Tc q
≤c Tc p) ∧ q ∈ NC ) → (2c
↑c Tc q) ≤c (2c
↑c Tc p)) | 
| 63 |   | breq1 4643 | 
. . . . . . . . . . . . . . . 16
⊢ (M = Tc
q → (M ≤c Tc p
↔ Tc q ≤c Tc p)) | 
| 64 | 63 | anbi2d 684 | 
. . . . . . . . . . . . . . 15
⊢ (M = Tc
q → ((p ∈ NC ∧ M ≤c Tc p)
↔ (p ∈ NC ∧ Tc
q ≤c Tc p))) | 
| 65 | 64 | anbi1d 685 | 
. . . . . . . . . . . . . 14
⊢ (M = Tc
q → (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) ↔
((p ∈
NC ∧ Tc q
≤c Tc p) ∧ q ∈ NC ))) | 
| 66 |   | oveq2 5532 | 
. . . . . . . . . . . . . . 15
⊢ (M = Tc
q → (2c
↑c M) =
(2c ↑c Tc q)) | 
| 67 | 66 | breq1d 4650 | 
. . . . . . . . . . . . . 14
⊢ (M = Tc
q → ((2c
↑c M)
≤c (2c ↑c Tc p)
↔ (2c ↑c Tc q)
≤c (2c ↑c Tc p))) | 
| 68 | 65, 67 | imbi12d 311 | 
. . . . . . . . . . . . 13
⊢ (M = Tc
q → ((((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p)) ↔ (((p
∈ NC ∧ Tc
q ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c Tc q)
≤c (2c ↑c Tc p)))) | 
| 69 | 62, 68 | mpbiri 224 | 
. . . . . . . . . . . 12
⊢ (M = Tc
q → (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p))) | 
| 70 | 69 | com12 27 | 
. . . . . . . . . . 11
⊢ (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) | 
| 71 | 70 | rexlimdva 2739 | 
. . . . . . . . . 10
⊢ ((p ∈ NC ∧ M ≤c Tc p)
→ (∃q ∈ NC M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) | 
| 72 | 71 | 3adant1 973 | 
. . . . . . . . 9
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ (∃q ∈ NC M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) | 
| 73 | 4, 72 | mpd 14 | 
. . . . . . . 8
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ (2c ↑c M) ≤c (2c
↑c Tc p)) | 
| 74 | 73 | 3expa 1151 | 
. . . . . . 7
⊢ (((M ∈ NC ∧ p ∈ NC ) ∧ M ≤c Tc p)
→ (2c ↑c M) ≤c (2c
↑c Tc p)) | 
| 75 | 74 | an32s 779 | 
. . . . . 6
⊢ (((M ∈ NC ∧ M ≤c Tc p)
∧ p ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p)) | 
| 76 |   | breq2 4644 | 
. . . . . . . . 9
⊢ (N = Tc
p → (M ≤c N ↔ M
≤c Tc p)) | 
| 77 | 76 | anbi2d 684 | 
. . . . . . . 8
⊢ (N = Tc
p → ((M ∈ NC ∧ M ≤c N) ↔ (M
∈ NC ∧ M
≤c Tc p))) | 
| 78 | 77 | anbi1d 685 | 
. . . . . . 7
⊢ (N = Tc
p → (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) ↔ ((M
∈ NC ∧ M
≤c Tc p) ∧ p ∈ NC ))) | 
| 79 |   | oveq2 5532 | 
. . . . . . . 8
⊢ (N = Tc
p → (2c
↑c N) =
(2c ↑c Tc p)) | 
| 80 | 79 | breq2d 4652 | 
. . . . . . 7
⊢ (N = Tc
p → ((2c
↑c M)
≤c (2c ↑c N) ↔ (2c
↑c M)
≤c (2c ↑c Tc p))) | 
| 81 | 78, 80 | imbi12d 311 | 
. . . . . 6
⊢ (N = Tc
p → ((((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c N)) ↔ (((M
∈ NC ∧ M
≤c Tc p) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c Tc p)))) | 
| 82 | 75, 81 | mpbiri 224 | 
. . . . 5
⊢ (N = Tc
p → (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c N))) | 
| 83 | 82 | com12 27 | 
. . . 4
⊢ (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (N =
Tc p → (2c
↑c M)
≤c (2c ↑c N))) | 
| 84 | 83 | rexlimdva 2739 | 
. . 3
⊢ ((M ∈ NC ∧ M ≤c N) → (∃p ∈ NC N = Tc
p → (2c
↑c M)
≤c (2c ↑c N))) | 
| 85 | 84 | 3ad2antl1 1117 | 
. 2
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) → (∃p ∈ NC N = Tc
p → (2c
↑c M)
≤c (2c ↑c N))) | 
| 86 | 3, 85 | mpd 14 | 
1
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) →
(2c ↑c M) ≤c (2c
↑c N)) |