Step | Hyp | Ref
| Expression |
1 | | ce0t 6232 |
. . . 4
⊢ ((N ∈ NC ∧ (N ↑c 0c)
∈ NC ) →
∃p ∈ NC N = Tc
p) |
2 | 1 | 3adant1 973 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) →
∃p ∈ NC N = Tc
p) |
3 | 2 | adantr 451 |
. 2
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) → ∃p ∈ NC N = Tc
p) |
4 | | letc 6231 |
. . . . . . . . 9
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ ∃q ∈ NC M = Tc q) |
5 | | tlecg 6230 |
. . . . . . . . . . . . . . . . 17
⊢ ((q ∈ NC ∧ p ∈ NC ) → (q
≤c p ↔ Tc q
≤c Tc p)) |
6 | 5 | ancoms 439 |
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ q ∈ NC ) → (q
≤c p ↔ Tc q
≤c Tc p)) |
7 | | elncs 6119 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (q ∈ NC ↔ ∃x q = Nc x) |
8 | | elncs 6119 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (p ∈ NC ↔ ∃y p = Nc y) |
9 | 7, 8 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((q ∈ NC ∧ p ∈ NC ) ↔ (∃x q = Nc x ∧ ∃y p = Nc y)) |
10 | | eeanv 1913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃x∃y(q = Nc x ∧ p = Nc y) ↔ (∃x q = Nc x ∧ ∃y p = Nc y)) |
11 | 9, 10 | bitr4i 243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((q ∈ NC ∧ p ∈ NC ) ↔ ∃x∃y(q = Nc x ∧ p = Nc y)) |
12 | | enpw 6087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p ≈ x
→ ℘p ≈ ℘x) |
13 | | elnc 6125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p ∈ Nc x ↔ p ≈ x) |
14 | | elnc 6125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (℘p ∈ Nc ℘x ↔
℘p
≈ ℘x) |
15 | 12, 13, 14 | 3imtr4i 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (p ∈ Nc x → ℘p ∈ Nc ℘x) |
16 | 15 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → ℘p ∈ Nc ℘x) |
17 | 16 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘p ∈ Nc ℘x) |
18 | | enpw 6087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (q ≈ y
→ ℘q ≈ ℘y) |
19 | | elnc 6125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (q ∈ Nc y ↔ q ≈ y) |
20 | | elnc 6125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (℘q ∈ Nc ℘y ↔
℘q
≈ ℘y) |
21 | 18, 19, 20 | 3imtr4i 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (q ∈ Nc y → ℘q ∈ Nc ℘y) |
22 | 21 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → ℘q ∈ Nc ℘y) |
23 | 22 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘q ∈ Nc ℘y) |
24 | | sspwb 4118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (p ⊆ q ↔ ℘p ⊆ ℘q) |
25 | 24 | biimpi 186 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (p ⊆ q → ℘p ⊆ ℘q) |
26 | 25 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ℘p ⊆ ℘q) |
27 | | sseq1 3292 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (r = ℘p → (r
⊆ s
↔ ℘p ⊆ s)) |
28 | | sseq2 3293 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (s = ℘q → (℘p ⊆ s ↔
℘p
⊆ ℘q)) |
29 | 27, 28 | rspc2ev 2963 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((℘p ∈ Nc ℘x ∧ ℘q ∈ Nc ℘y ∧ ℘p ⊆ ℘q) → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) |
30 | 17, 23, 26, 29 | syl3anc 1182 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((p ∈ Nc x ∧ q ∈ Nc y) ∧ p ⊆ q) → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) |
31 | 30 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((p ∈ Nc x ∧ q ∈ Nc y) → (p
⊆ q
→ ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s)) |
32 | 31 | rexlimivv 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃p ∈ Nc x∃q ∈ Nc yp ⊆ q → ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) |
33 | | ncex 6117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Nc x ∈ V |
34 | | ncex 6117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Nc y ∈ V |
35 | 33, 34 | brlec 6113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Nc x
≤c Nc y ↔ ∃p ∈ Nc x∃q ∈ Nc yp ⊆ q) |
36 | | ncex 6117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Nc ℘x ∈
V |
37 | | ncex 6117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Nc ℘y ∈
V |
38 | 36, 37 | brlec 6113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Nc ℘x ≤c Nc
℘y
↔ ∃r ∈ Nc ℘x∃s ∈ Nc ℘yr ⊆ s) |
39 | 32, 35, 38 | 3imtr4i 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( Nc x
≤c Nc y → Nc ℘x
≤c Nc ℘y) |
40 | | vex 2862 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ x ∈
V |
41 | 40 | tcnc 6225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ Tc Nc x = Nc ℘1x |
42 | 40 | ce2 6192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Tc Nc x = Nc ℘1x → (2c
↑c Tc Nc x) = Nc ℘x) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2c ↑c Tc Nc x) = Nc ℘x |
44 | | vex 2862 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ y ∈
V |
45 | 44 | tcnc 6225 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ Tc Nc y = Nc ℘1y |
46 | 44 | ce2 6192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( Tc Nc y = Nc ℘1y → (2c
↑c Tc Nc y) = Nc ℘y) |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2c ↑c Tc Nc y) = Nc ℘y |
48 | 39, 43, 47 | 3brtr4g 4671 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Nc x
≤c Nc y → (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y)) |
49 | | breq12 4644 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((q = Nc x ∧ p = Nc y) → (q
≤c p ↔ Nc x
≤c Nc y)) |
50 | | tceq 6158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (q = Nc x → Tc
q = Tc Nc x) |
51 | 50 | oveq2d 5538 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (q = Nc x → (2c
↑c Tc q) = (2c ↑c
Tc Nc
x)) |
52 | | tceq 6158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (p = Nc y → Tc
p = Tc Nc y) |
53 | 52 | oveq2d 5538 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (p = Nc y → (2c
↑c Tc p) = (2c ↑c
Tc Nc
y)) |
54 | 51, 53 | breqan12d 4654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((q = Nc x ∧ p = Nc y) → ((2c
↑c Tc q) ≤c (2c
↑c Tc p) ↔ (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y))) |
55 | 49, 54 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((q = Nc x ∧ p = Nc y) → ((q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))
↔ ( Nc x
≤c Nc y → (2c
↑c Tc Nc x)
≤c (2c ↑c Tc Nc y)))) |
56 | 48, 55 | mpbiri 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((q = Nc x ∧ p = Nc y) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
57 | 56 | exlimivv 1635 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃x∃y(q = Nc x ∧ p = Nc y) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
58 | 11, 57 | sylbi 187 |
. . . . . . . . . . . . . . . . 17
⊢ ((q ∈ NC ∧ p ∈ NC ) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
59 | 58 | ancoms 439 |
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ q ∈ NC ) → (q
≤c p →
(2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
60 | 6, 59 | sylbird 226 |
. . . . . . . . . . . . . . 15
⊢ ((p ∈ NC ∧ q ∈ NC ) → ( Tc
q ≤c Tc p
→ (2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
61 | 60 | imp 418 |
. . . . . . . . . . . . . 14
⊢ (((p ∈ NC ∧ q ∈ NC ) ∧ Tc q
≤c Tc p) → (2c
↑c Tc q) ≤c (2c
↑c Tc p)) |
62 | 61 | an32s 779 |
. . . . . . . . . . . . 13
⊢ (((p ∈ NC ∧ Tc q
≤c Tc p) ∧ q ∈ NC ) → (2c
↑c Tc q) ≤c (2c
↑c Tc p)) |
63 | | breq1 4642 |
. . . . . . . . . . . . . . . 16
⊢ (M = Tc
q → (M ≤c Tc p
↔ Tc q ≤c Tc p)) |
64 | 63 | anbi2d 684 |
. . . . . . . . . . . . . . 15
⊢ (M = Tc
q → ((p ∈ NC ∧ M ≤c Tc p)
↔ (p ∈ NC ∧ Tc
q ≤c Tc p))) |
65 | 64 | anbi1d 685 |
. . . . . . . . . . . . . 14
⊢ (M = Tc
q → (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) ↔
((p ∈
NC ∧ Tc q
≤c Tc p) ∧ q ∈ NC ))) |
66 | | oveq2 5531 |
. . . . . . . . . . . . . . 15
⊢ (M = Tc
q → (2c
↑c M) =
(2c ↑c Tc q)) |
67 | 66 | breq1d 4649 |
. . . . . . . . . . . . . 14
⊢ (M = Tc
q → ((2c
↑c M)
≤c (2c ↑c Tc p)
↔ (2c ↑c Tc q)
≤c (2c ↑c Tc p))) |
68 | 65, 67 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ (M = Tc
q → ((((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p)) ↔ (((p
∈ NC ∧ Tc
q ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c Tc q)
≤c (2c ↑c Tc p)))) |
69 | 62, 68 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ (M = Tc
q → (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p))) |
70 | 69 | com12 27 |
. . . . . . . . . . 11
⊢ (((p ∈ NC ∧ M ≤c Tc p)
∧ q ∈ NC ) →
(M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) |
71 | 70 | rexlimdva 2738 |
. . . . . . . . . 10
⊢ ((p ∈ NC ∧ M ≤c Tc p)
→ (∃q ∈ NC M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) |
72 | 71 | 3adant1 973 |
. . . . . . . . 9
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ (∃q ∈ NC M = Tc q
→ (2c ↑c M) ≤c (2c
↑c Tc p))) |
73 | 4, 72 | mpd 14 |
. . . . . . . 8
⊢ ((M ∈ NC ∧ p ∈ NC ∧ M ≤c Tc p)
→ (2c ↑c M) ≤c (2c
↑c Tc p)) |
74 | 73 | 3expa 1151 |
. . . . . . 7
⊢ (((M ∈ NC ∧ p ∈ NC ) ∧ M ≤c Tc p)
→ (2c ↑c M) ≤c (2c
↑c Tc p)) |
75 | 74 | an32s 779 |
. . . . . 6
⊢ (((M ∈ NC ∧ M ≤c Tc p)
∧ p ∈ NC ) →
(2c ↑c M) ≤c (2c
↑c Tc p)) |
76 | | breq2 4643 |
. . . . . . . . 9
⊢ (N = Tc
p → (M ≤c N ↔ M
≤c Tc p)) |
77 | 76 | anbi2d 684 |
. . . . . . . 8
⊢ (N = Tc
p → ((M ∈ NC ∧ M ≤c N) ↔ (M
∈ NC ∧ M
≤c Tc p))) |
78 | 77 | anbi1d 685 |
. . . . . . 7
⊢ (N = Tc
p → (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) ↔ ((M
∈ NC ∧ M
≤c Tc p) ∧ p ∈ NC ))) |
79 | | oveq2 5531 |
. . . . . . . 8
⊢ (N = Tc
p → (2c
↑c N) =
(2c ↑c Tc p)) |
80 | 79 | breq2d 4651 |
. . . . . . 7
⊢ (N = Tc
p → ((2c
↑c M)
≤c (2c ↑c N) ↔ (2c
↑c M)
≤c (2c ↑c Tc p))) |
81 | 78, 80 | imbi12d 311 |
. . . . . 6
⊢ (N = Tc
p → ((((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c N)) ↔ (((M
∈ NC ∧ M
≤c Tc p) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c Tc p)))) |
82 | 75, 81 | mpbiri 224 |
. . . . 5
⊢ (N = Tc
p → (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (2c
↑c M)
≤c (2c ↑c N))) |
83 | 82 | com12 27 |
. . . 4
⊢ (((M ∈ NC ∧ M ≤c N) ∧ p ∈ NC ) → (N =
Tc p → (2c
↑c M)
≤c (2c ↑c N))) |
84 | 83 | rexlimdva 2738 |
. . 3
⊢ ((M ∈ NC ∧ M ≤c N) → (∃p ∈ NC N = Tc
p → (2c
↑c M)
≤c (2c ↑c N))) |
85 | 84 | 3ad2antl1 1117 |
. 2
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) → (∃p ∈ NC N = Tc
p → (2c
↑c M)
≤c (2c ↑c N))) |
86 | 3, 85 | mpd 14 |
1
⊢ (((M ∈ NC ∧ N ∈ NC ∧ (N ↑c 0c)
∈ NC ) ∧ M
≤c N) →
(2c ↑c M) ≤c (2c
↑c N)) |