Step | Hyp | Ref
| Expression |
1 | | dflec2 6210 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃p ∈ NC N = (M
+c p))) |
2 | | tccl 6160 |
. . . . . . . 8
⊢ (M ∈ NC → Tc
M ∈ NC ) |
3 | | tccl 6160 |
. . . . . . . 8
⊢ (p ∈ NC → Tc
p ∈ NC ) |
4 | | addlecncs 6209 |
. . . . . . . 8
⊢ (( Tc M
∈ NC ∧ Tc
p ∈ NC ) → Tc
M ≤c ( Tc M
+c Tc p)) |
5 | 2, 3, 4 | syl2an 463 |
. . . . . . 7
⊢ ((M ∈ NC ∧ p ∈ NC ) → Tc
M ≤c ( Tc M
+c Tc p)) |
6 | | tcdi 6164 |
. . . . . . 7
⊢ ((M ∈ NC ∧ p ∈ NC ) → Tc
(M +c p) = ( Tc
M +c Tc p)) |
7 | 5, 6 | breqtrrd 4665 |
. . . . . 6
⊢ ((M ∈ NC ∧ p ∈ NC ) → Tc
M ≤c Tc (M
+c p)) |
8 | | tceq 6158 |
. . . . . . 7
⊢ (N = (M
+c p) → Tc N =
Tc (M +c p)) |
9 | 8 | breq2d 4651 |
. . . . . 6
⊢ (N = (M
+c p) → ( Tc M
≤c Tc N ↔ Tc
M ≤c Tc (M
+c p))) |
10 | 7, 9 | syl5ibrcom 213 |
. . . . 5
⊢ ((M ∈ NC ∧ p ∈ NC ) → (N =
(M +c p) → Tc
M ≤c Tc N)) |
11 | 10 | rexlimdva 2738 |
. . . 4
⊢ (M ∈ NC → (∃p ∈ NC N = (M +c p) → Tc
M ≤c Tc N)) |
12 | 11 | adantr 451 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃p ∈ NC N = (M
+c p) → Tc M
≤c Tc N)) |
13 | 1, 12 | sylbid 206 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N → Tc M
≤c Tc N)) |
14 | | tccl 6160 |
. . . 4
⊢ (N ∈ NC → Tc
N ∈ NC ) |
15 | | dflec2 6210 |
. . . 4
⊢ (( Tc M
∈ NC ∧ Tc
N ∈ NC ) → ( Tc
M ≤c Tc N
↔ ∃p ∈ NC Tc N = ( Tc
M +c p))) |
16 | 2, 14, 15 | syl2an 463 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc
M ≤c Tc N
↔ ∃p ∈ NC Tc N = ( Tc
M +c p))) |
17 | | simplr 731 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → N
∈ NC
) |
18 | | simpll 730 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → M
∈ NC
) |
19 | | simprl 732 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → p
∈ NC
) |
20 | | simprr 733 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → Tc N = (
Tc M +c p)) |
21 | | taddc 6229 |
. . . . . . 7
⊢ (((N ∈ NC ∧ M ∈ NC ∧ p ∈ NC ) ∧ Tc N = (
Tc M +c p)) → ∃q ∈ NC p = Tc
q) |
22 | 17, 18, 19, 20, 21 | syl31anc 1185 |
. . . . . 6
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → ∃q ∈ NC p = Tc
q) |
23 | | addceq2 4384 |
. . . . . . . . . . . . 13
⊢ (p = Tc
q → ( Tc M
+c p) = ( Tc M
+c Tc q)) |
24 | 23 | eqeq2d 2364 |
. . . . . . . . . . . 12
⊢ (p = Tc
q → ( Tc N = (
Tc M +c p) ↔ Tc
N = ( Tc M
+c Tc q))) |
25 | 24 | biimpac 472 |
. . . . . . . . . . 11
⊢ (( Tc N = (
Tc M +c p) ∧ p = Tc
q) → Tc N = (
Tc M +c Tc q)) |
26 | | tcdi 6164 |
. . . . . . . . . . . . . 14
⊢ ((M ∈ NC ∧ q ∈ NC ) → Tc
(M +c q) = ( Tc
M +c Tc q)) |
27 | 26 | adantlr 695 |
. . . . . . . . . . . . 13
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → Tc
(M +c q) = ( Tc
M +c Tc q)) |
28 | 27 | eqeq2d 2364 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ( Tc
N = Tc (M
+c q) ↔ Tc N = (
Tc M +c Tc q))) |
29 | | simplr 731 |
. . . . . . . . . . . . . 14
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → N ∈ NC
) |
30 | | ncaddccl 6144 |
. . . . . . . . . . . . . . 15
⊢ ((M ∈ NC ∧ q ∈ NC ) → (M
+c q) ∈ NC
) |
31 | 30 | adantlr 695 |
. . . . . . . . . . . . . 14
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (M
+c q) ∈ NC
) |
32 | | tc11 6228 |
. . . . . . . . . . . . . 14
⊢ ((N ∈ NC ∧ (M +c q) ∈ NC ) → ( Tc
N = Tc (M
+c q) ↔ N = (M
+c q))) |
33 | 29, 31, 32 | syl2anc 642 |
. . . . . . . . . . . . 13
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ( Tc
N = Tc (M
+c q) ↔ N = (M
+c q))) |
34 | | addlecncs 6209 |
. . . . . . . . . . . . . . 15
⊢ ((M ∈ NC ∧ q ∈ NC ) → M
≤c (M +c
q)) |
35 | | breq2 4643 |
. . . . . . . . . . . . . . 15
⊢ (N = (M
+c q) → (M ≤c N ↔ M
≤c (M +c
q))) |
36 | 34, 35 | syl5ibrcom 213 |
. . . . . . . . . . . . . 14
⊢ ((M ∈ NC ∧ q ∈ NC ) → (N =
(M +c q) → M
≤c N)) |
37 | 36 | adantlr 695 |
. . . . . . . . . . . . 13
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (N =
(M +c q) → M
≤c N)) |
38 | 33, 37 | sylbid 206 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ( Tc
N = Tc (M
+c q) → M ≤c N)) |
39 | 28, 38 | sylbird 226 |
. . . . . . . . . . 11
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ( Tc
N = ( Tc M
+c Tc q) → M
≤c N)) |
40 | 25, 39 | syl5 28 |
. . . . . . . . . 10
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → (( Tc N = (
Tc M +c p) ∧ p = Tc
q) → M ≤c N)) |
41 | 40 | expdimp 426 |
. . . . . . . . 9
⊢ ((((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) ∧ Tc N = (
Tc M +c p)) → (p =
Tc q → M
≤c N)) |
42 | 41 | an32s 779 |
. . . . . . . 8
⊢ ((((M ∈ NC ∧ N ∈ NC ) ∧ Tc N = (
Tc M +c p)) ∧ q ∈ NC ) → (p =
Tc q → M
≤c N)) |
43 | 42 | rexlimdva 2738 |
. . . . . . 7
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ Tc N = (
Tc M +c p)) → (∃q ∈ NC p = Tc
q → M ≤c N)) |
44 | 43 | adantrl 696 |
. . . . . 6
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → (∃q ∈ NC p = Tc
q → M ≤c N)) |
45 | 22, 44 | mpd 14 |
. . . . 5
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (p ∈ NC ∧ Tc N = (
Tc M +c p))) → M
≤c N) |
46 | 45 | expr 598 |
. . . 4
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ p ∈ NC ) → ( Tc
N = ( Tc M
+c p) → M ≤c N)) |
47 | 46 | rexlimdva 2738 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃p ∈ NC Tc N = (
Tc M +c p) → M
≤c N)) |
48 | 16, 47 | sylbid 206 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → ( Tc
M ≤c Tc N
→ M ≤c N)) |
49 | 13, 48 | impbid 183 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ Tc M
≤c Tc N)) |