New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uneq12 | GIF version |
Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 | ⊢ ((A = B ∧ C = D) → (A ∪ C) = (B ∪ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3412 | . 2 ⊢ (A = B → (A ∪ C) = (B ∪ C)) | |
2 | uneq2 3413 | . 2 ⊢ (C = D → (B ∪ C) = (B ∪ D)) | |
3 | 1, 2 | sylan9eq 2405 | 1 ⊢ ((A = B ∧ C = D) → (A ∪ C) = (B ∪ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: uneq12i 3417 uneq12d 3420 un00 3587 pw1equn 4332 pw1eqadj 4333 nnsucelr 4429 dmpropg 5069 fnun 5190 fvun 5379 |
Copyright terms: Public domain | W3C validator |