New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ A = B |
uneq12i.2 | ⊢ C = D |
Ref | Expression |
---|---|
uneq12i | ⊢ (A ∪ C) = (B ∪ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ A = B | |
2 | uneq12i.2 | . 2 ⊢ C = D | |
3 | uneq12 3413 | . 2 ⊢ ((A = B ∧ C = D) → (A ∪ C) = (B ∪ D)) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∪ C) = (B ∪ D) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪ cun 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 |
This theorem is referenced by: indir 3503 difundir 3508 difindi 3509 symdif1 3519 unrab 3526 rabun2 3534 dfun4 3546 iunin 3547 dfif6 3665 dfif3 3672 dfif5 3674 nnc0suc 4412 nnsucelrlem3 4426 ltfintrilem1 4465 dfop2 4575 phiun 4614 opeq 4619 unopab 4638 xpundi 4832 xpundir 4833 xpun 4834 resundi 4981 resundir 4982 cnvun 5033 rnun 5036 imaundi 5039 imaundir 5040 dmtpop 5071 coundi 5082 coundir 5083 fpr 5437 fvsnun2 5448 clos1basesuc 5882 ce2 6192 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |