New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ A = B |
uneq12i.2 | ⊢ C = D |
Ref | Expression |
---|---|
uneq12i | ⊢ (A ∪ C) = (B ∪ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ A = B | |
2 | uneq12i.2 | . 2 ⊢ C = D | |
3 | uneq12 3414 | . 2 ⊢ ((A = B ∧ C = D) → (A ∪ C) = (B ∪ D)) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∪ C) = (B ∪ D) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: indir 3504 difundir 3509 difindi 3510 symdif1 3520 unrab 3527 rabun2 3535 dfun4 3547 iunin 3548 dfif6 3666 dfif3 3673 dfif5 3675 nnc0suc 4413 nnsucelrlem3 4427 ltfintrilem1 4466 dfop2 4576 phiun 4615 opeq 4620 unopab 4639 xpundi 4833 xpundir 4834 xpun 4835 resundi 4982 resundir 4983 cnvun 5034 rnun 5037 imaundi 5040 imaundir 5041 dmtpop 5072 coundi 5083 coundir 5084 fpr 5438 fvsnun2 5449 clos1basesuc 5883 ce2 6193 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |