Proof of Theorem wdf-c2
Step | Hyp | Ref
| Expression |
1 | | le1 146 |
. 2
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) ≤ 1 |
2 | | lea 160 |
. . . . 5
(a⊥ ∩ b) ≤ a⊥ |
3 | | lea 160 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ a⊥ |
4 | 2, 3 | lel2or 170 |
. . . 4
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
5 | 4 | lelor 166 |
. . 3
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≤ (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) |
6 | | wdf-c2.1 |
. . . . 5
C (a, b) = 1 |
7 | 6 | ax-r1 35 |
. . . 4
1 = C (a, b) |
8 | | df-cmtr 134 |
. . . 4
C (a, b) = (((a ∩
b) ∪ (a ∩ b⊥ )) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
9 | 7, 8 | ax-r2 36 |
. . 3
1 = (((a ∩ b) ∪ (a
∩ b⊥ )) ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
10 | | dfb 94 |
. . . 4
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) = ((a ∩ ((a
∩ b) ∪ (a ∩ b⊥ ))) ∪ (a⊥ ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))⊥
)) |
11 | | ancom 74 |
. . . . . 6
(a ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∩ a) |
12 | | lea 160 |
. . . . . . . 8
(a ∩ b) ≤ a |
13 | | lea 160 |
. . . . . . . 8
(a ∩ b⊥ ) ≤ a |
14 | 12, 13 | lel2or 170 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ b⊥ )) ≤ a |
15 | 14 | df2le2 136 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ b⊥ )) ∩ a) = ((a ∩
b) ∪ (a ∩ b⊥ )) |
16 | 11, 15 | ax-r2 36 |
. . . . 5
(a ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))) = ((a ∩ b) ∪
(a ∩ b⊥ )) |
17 | | anandi 114 |
. . . . . 6
(a⊥ ∩
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = ((a⊥ ∩ (a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ (a⊥ ∪ b))) |
18 | | oran3 93 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
19 | | oran2 92 |
. . . . . . . . 9
(a⊥ ∪ b) = (a ∩
b⊥
)⊥ |
20 | 18, 19 | 2an 79 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a ∩
b)⊥ ∩ (a ∩ b⊥ )⊥
) |
21 | | anor3 90 |
. . . . . . . 8
((a ∩ b)⊥ ∩ (a ∩ b⊥ )⊥ ) =
((a ∩ b) ∪ (a
∩ b⊥
))⊥ |
22 | 20, 21 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b)) = ((a ∩
b) ∪ (a ∩ b⊥
))⊥ |
23 | 22 | lan 77 |
. . . . . 6
(a⊥ ∩
((a⊥ ∪ b⊥ ) ∩ (a⊥ ∪ b))) = (a⊥ ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))⊥
) |
24 | | anabs 121 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ∪ b⊥ )) = a⊥ |
25 | | anabs 121 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ∪ b)) = a⊥ |
26 | 24, 25 | 2an 79 |
. . . . . . 7
((a⊥ ∩
(a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ (a⊥ ∪ b))) = (a⊥ ∩ a⊥ ) |
27 | | anidm 111 |
. . . . . . 7
(a⊥ ∩ a⊥ ) = a⊥ |
28 | 26, 27 | ax-r2 36 |
. . . . . 6
((a⊥ ∩
(a⊥ ∪ b⊥ )) ∩ (a⊥ ∩ (a⊥ ∪ b))) = a⊥ |
29 | 17, 23, 28 | 3tr2 64 |
. . . . 5
(a⊥ ∩
((a ∩ b) ∪ (a
∩ b⊥
))⊥ ) = a⊥ |
30 | 16, 29 | 2or 72 |
. . . 4
((a ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))) ∪ (a⊥ ∩ ((a ∩ b) ∪
(a ∩ b⊥ ))⊥ )) =
(((a ∩ b) ∪ (a
∩ b⊥ )) ∪ a⊥ ) |
31 | 10, 30 | ax-r2 36 |
. . 3
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) = (((a ∩ b) ∪
(a ∩ b⊥ )) ∪ a⊥ ) |
32 | 5, 9, 31 | le3tr1 140 |
. 2
1 ≤ (a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
33 | 1, 32 | lebi 145 |
1
(a ≡ ((a ∩ b) ∪
(a ∩ b⊥ ))) = 1 |