Proof of Theorem wfh4
| Step | Hyp | Ref
| Expression |
| 1 | | wfh.1 |
. . . . 5
C (a, b) = 1 |
| 2 | 1 | wcomcom4 417 |
. . . 4
C (a⊥ ,
b⊥ ) = 1 |
| 3 | | wfh.2 |
. . . . 5
C (a, c) = 1 |
| 4 | 3 | wcomcom4 417 |
. . . 4
C (a⊥ ,
c⊥ ) = 1 |
| 5 | 2, 4 | wfh2 424 |
. . 3
((b⊥ ∩
(a⊥ ∪ c⊥ )) ≡ ((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ ))) = 1 |
| 6 | | anor2 89 |
. . . . 5
(b⊥ ∩ (a⊥ ∪ c⊥ )) = (b ∪ (a⊥ ∪ c⊥ )⊥
)⊥ |
| 7 | 6 | bi1 118 |
. . . 4
((b⊥ ∩
(a⊥ ∪ c⊥ )) ≡ (b ∪ (a⊥ ∪ c⊥ )⊥
)⊥ ) = 1 |
| 8 | | df-a 40 |
. . . . . . . 8
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
| 9 | 8 | bi1 118 |
. . . . . . 7
((a ∩ c) ≡ (a⊥ ∪ c⊥ )⊥ ) =
1 |
| 10 | 9 | wr1 197 |
. . . . . 6
((a⊥ ∪ c⊥ )⊥ ≡
(a ∩ c)) = 1 |
| 11 | 10 | wlor 368 |
. . . . 5
((b ∪ (a⊥ ∪ c⊥ )⊥ ) ≡
(b ∪ (a ∩ c))) =
1 |
| 12 | 11 | wr4 199 |
. . . 4
((b ∪ (a⊥ ∪ c⊥ )⊥
)⊥ ≡ (b ∪
(a ∩ c))⊥ ) = 1 |
| 13 | 7, 12 | wr2 371 |
. . 3
((b⊥ ∩
(a⊥ ∪ c⊥ )) ≡ (b ∪ (a ∩
c))⊥ ) =
1 |
| 14 | | oran 87 |
. . . . 5
((b⊥ ∩ a⊥ ) ∪ (b⊥ ∩ c⊥ )) = ((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥
)⊥ |
| 15 | 14 | bi1 118 |
. . . 4
(((b⊥ ∩
a⊥ ) ∪ (b⊥ ∩ c⊥ )) ≡ ((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥
)⊥ ) = 1 |
| 16 | | oran 87 |
. . . . . . . 8
(b ∪ a) = (b⊥ ∩ a⊥
)⊥ |
| 17 | 16 | bi1 118 |
. . . . . . 7
((b ∪ a) ≡ (b⊥ ∩ a⊥ )⊥ ) =
1 |
| 18 | | oran 87 |
. . . . . . . 8
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 19 | 18 | bi1 118 |
. . . . . . 7
((b ∪ c) ≡ (b⊥ ∩ c⊥ )⊥ ) =
1 |
| 20 | 17, 19 | w2an 373 |
. . . . . 6
(((b ∪ a) ∩ (b
∪ c)) ≡ ((b⊥ ∩ a⊥ )⊥ ∩
(b⊥ ∩ c⊥ )⊥ )) =
1 |
| 21 | 20 | wr1 197 |
. . . . 5
(((b⊥ ∩
a⊥ )⊥
∩ (b⊥ ∩ c⊥ )⊥ ) ≡
((b ∪ a) ∩ (b
∪ c))) = 1 |
| 22 | 21 | wr4 199 |
. . . 4
(((b⊥ ∩
a⊥ )⊥
∩ (b⊥ ∩ c⊥ )⊥
)⊥ ≡ ((b ∪
a) ∩ (b ∪ c))⊥ ) = 1 |
| 23 | 15, 22 | wr2 371 |
. . 3
(((b⊥ ∩
a⊥ ) ∪ (b⊥ ∩ c⊥ )) ≡ ((b ∪ a) ∩
(b ∪ c))⊥ ) = 1 |
| 24 | 5, 13, 23 | w3tr2 375 |
. 2
((b ∪ (a ∩ c))⊥ ≡ ((b ∪ a) ∩
(b ∪ c))⊥ ) = 1 |
| 25 | 24 | wcon1 207 |
1
((b ∪ (a ∩ c))
≡ ((b ∪ a) ∩ (b
∪ c))) = 1 |