Proof of Theorem wfh3
Step | Hyp | Ref
| Expression |
1 | | wfh.1 |
. . . . 5
C (a, b) = 1 |
2 | 1 | wcomcom4 417 |
. . . 4
C (a⊥ ,
b⊥ ) = 1 |
3 | | wfh.2 |
. . . . 5
C (a, c) = 1 |
4 | 3 | wcomcom4 417 |
. . . 4
C (a⊥ ,
c⊥ ) = 1 |
5 | 2, 4 | wfh1 423 |
. . 3
((a⊥ ∩
(b⊥ ∪ c⊥ )) ≡ ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ ))) = 1 |
6 | | anor2 89 |
. . . . 5
(a⊥ ∩ (b⊥ ∪ c⊥ )) = (a ∪ (b⊥ ∪ c⊥ )⊥
)⊥ |
7 | 6 | bi1 118 |
. . . 4
((a⊥ ∩
(b⊥ ∪ c⊥ )) ≡ (a ∪ (b⊥ ∪ c⊥ )⊥
)⊥ ) = 1 |
8 | | df-a 40 |
. . . . . . . 8
(b ∩ c) = (b⊥ ∪ c⊥
)⊥ |
9 | 8 | bi1 118 |
. . . . . . 7
((b ∩ c) ≡ (b⊥ ∪ c⊥ )⊥ ) =
1 |
10 | 9 | wr1 197 |
. . . . . 6
((b⊥ ∪ c⊥ )⊥ ≡
(b ∩ c)) = 1 |
11 | 10 | wlor 368 |
. . . . 5
((a ∪ (b⊥ ∪ c⊥ )⊥ ) ≡
(a ∪ (b ∩ c))) =
1 |
12 | 11 | wr4 199 |
. . . 4
((a ∪ (b⊥ ∪ c⊥ )⊥
)⊥ ≡ (a ∪
(b ∩ c))⊥ ) = 1 |
13 | 7, 12 | wr2 371 |
. . 3
((a⊥ ∩
(b⊥ ∪ c⊥ )) ≡ (a ∪ (b ∩
c))⊥ ) =
1 |
14 | | oran 87 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ c⊥ )) = ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ c⊥ )⊥
)⊥ |
15 | 14 | bi1 118 |
. . . 4
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ c⊥ )) ≡ ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ c⊥ )⊥
)⊥ ) = 1 |
16 | | oran 87 |
. . . . . . . 8
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
17 | 16 | bi1 118 |
. . . . . . 7
((a ∪ b) ≡ (a⊥ ∩ b⊥ )⊥ ) =
1 |
18 | | oran 87 |
. . . . . . . 8
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
19 | 18 | bi1 118 |
. . . . . . 7
((a ∪ c) ≡ (a⊥ ∩ c⊥ )⊥ ) =
1 |
20 | 17, 19 | w2an 373 |
. . . . . 6
(((a ∪ b) ∩ (a
∪ c)) ≡ ((a⊥ ∩ b⊥ )⊥ ∩
(a⊥ ∩ c⊥ )⊥ )) =
1 |
21 | 20 | wr1 197 |
. . . . 5
(((a⊥ ∩
b⊥ )⊥
∩ (a⊥ ∩ c⊥ )⊥ ) ≡
((a ∪ b) ∩ (a
∪ c))) = 1 |
22 | 21 | wr4 199 |
. . . 4
(((a⊥ ∩
b⊥ )⊥
∩ (a⊥ ∩ c⊥ )⊥
)⊥ ≡ ((a ∪
b) ∩ (a ∪ c))⊥ ) = 1 |
23 | 15, 22 | wr2 371 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ c⊥ )) ≡ ((a ∪ b) ∩
(a ∪ c))⊥ ) = 1 |
24 | 5, 13, 23 | w3tr2 375 |
. 2
((a ∪ (b ∩ c))⊥ ≡ ((a ∪ b) ∩
(a ∪ c))⊥ ) = 1 |
25 | 24 | wcon1 207 |
1
((a ∪ (b ∩ c))
≡ ((a ∪ b) ∩ (a
∪ c))) = 1 |