ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopu Unicode version

Theorem caucvgprprlemopu 6951
Description: Lemma for caucvgprpr 6964. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemopu  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, m    m, F    F, l, r, s   
u, F, r, s    L, s    p, l, q, t, r, s    u, p, q, t    ph, r,
s
Allowed substitution hints:    ph( u, t, k, m, n, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, q, p)    L( u, t, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemopu
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
21caucvgprprlemelu 6938 . . . 4  |-  ( t  e.  ( 2nd `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
)
32simprbi 269 . . 3  |-  ( t  e.  ( 2nd `  L
)  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
43adantl 271 . 2  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
5 simprr 499 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )
6 caucvgprpr.f . . . . . . . . 9  |-  ( ph  ->  F : N. --> P. )
76ffvelrnda 5334 . . . . . . . 8  |-  ( (
ph  /\  b  e.  N. )  ->  ( F `
 b )  e. 
P. )
8 recnnpr 6800 . . . . . . . . 9  |-  ( b  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
98adantl 271 . . . . . . . 8  |-  ( (
ph  /\  b  e.  N. )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
10 addclpr 6789 . . . . . . . 8  |-  ( ( ( F `  b
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
117, 9, 10syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  b  e.  N. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
1211ad2ant2r 493 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
132simplbi 268 . . . . . . . 8  |-  ( t  e.  ( 2nd `  L
)  ->  t  e.  Q. )
1413ad2antlr 473 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  t  e.  Q. )
15 nqprlu 6799 . . . . . . 7  |-  ( t  e.  Q.  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
1614, 15syl 14 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
17 ltdfpr 6758 . . . . . 6  |-  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )  -> 
( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >.  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) ) )
1812, 16, 17syl2anc 403 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >.  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) ) )
195, 18mpbid 145 . . . 4  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) )
20 simpr 108 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  s  e. 
Q. )
2112adantr 270 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
22 nqpru 6804 . . . . . . . 8  |-  ( ( s  e.  Q.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )  ->  (
s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  <->  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
2320, 21, 22syl2anc 403 . . . . . . 7  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  <->  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
24 vex 2605 . . . . . . . . 9  |-  s  e. 
_V
25 breq1 3796 . . . . . . . . 9  |-  ( p  =  s  ->  (
p  <Q  t  <->  s  <Q  t ) )
26 ltnqex 6801 . . . . . . . . . 10  |-  { p  |  p  <Q  t }  e.  _V
27 gtnqex 6802 . . . . . . . . . 10  |-  { q  |  t  <Q  q }  e.  _V
2826, 27op1st 5804 . . . . . . . . 9  |-  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )  =  { p  |  p 
<Q  t }
2924, 25, 28elab2 2742 . . . . . . . 8  |-  ( s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )  <->  s  <Q  t )
3029a1i 9 . . . . . . 7  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )  <->  s  <Q  t ) )
3123, 30anbi12d 457 . . . . . 6  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  <->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) ) )
3231biimpd 142 . . . . 5  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  ->  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) ) )
3332reximdva 2464 . . . 4  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( E. s  e.  Q.  (
s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  ->  E. s  e.  Q.  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >.  /\  s  <Q  t
) ) )
3419, 33mpd 13 . . 3  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >.  /\  s  <Q  t
) )
35 simprr 499 . . . . . 6  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  <Q  t )
36 simplr 497 . . . . . . 7  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  e.  Q. )
37 simplrl 502 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  b  e. 
N. )
3837adantr 270 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
b  e.  N. )
39 simprl 498 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
40 fveq2 5209 . . . . . . . . . . 11  |-  ( r  =  b  ->  ( F `  r )  =  ( F `  b ) )
41 opeq1 3578 . . . . . . . . . . . . . . . 16  |-  ( r  =  b  ->  <. r ,  1o >.  =  <. b ,  1o >. )
4241eceq1d 6208 . . . . . . . . . . . . . . 15  |-  ( r  =  b  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
4342fveq2d 5213 . . . . . . . . . . . . . 14  |-  ( r  =  b  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
4443breq2d 3805 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
4544abbidv 2197 . . . . . . . . . . . 12  |-  ( r  =  b  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } )
4643breq1d 3803 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q ) )
4746abbidv 2197 . . . . . . . . . . . 12  |-  ( r  =  b  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )  <Q  q } )
4845, 47opeq12d 3586 . . . . . . . . . . 11  |-  ( r  =  b  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
4940, 48oveq12d 5561 . . . . . . . . . 10  |-  ( r  =  b  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5049breq1d 3803 . . . . . . . . 9  |-  ( r  =  b  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  <->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >. ) )
5150rspcev 2702 . . . . . . . 8  |-  ( ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
5238, 39, 51syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
531caucvgprprlemelu 6938 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
5436, 52, 53sylanbrc 408 . . . . . 6  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  e.  ( 2nd `  L ) )
5535, 54jca 300 . . . . 5  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) )
5655ex 113 . . . 4  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t )  ->  (
s  <Q  t  /\  s  e.  ( 2nd `  L
) ) ) )
5756reximdva 2464 . . 3  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( E. s  e.  Q.  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) ) )
5834, 57mpd 13 . 2  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
594, 58rexlimddv 2482 1  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   E.wrex 2350   {crab 2353   <.cop 3409   class class class wbr 3793   -->wf 4928   ` cfv 4932  (class class class)co 5543   1stc1st 5796   2ndc2nd 5797   1oc1o 6058   [cec 6170   N.cnpi 6524    <N clti 6527    ~Q ceq 6531   Q.cnq 6532    +Q cplq 6534   *Qcrq 6536    <Q cltq 6537   P.cnp 6543    +P. cpp 6545    <P cltp 6547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-iplp 6720  df-iltp 6722
This theorem is referenced by:  caucvgprprlemrnd  6953
  Copyright terms: Public domain W3C validator