ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle Unicode version

Theorem cvgratnnlemabsle 11296
Description: Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemabsle  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
21nnzd 9172 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32peano2zd 9176 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4 cvgratnn.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9335 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
73, 6fzfigd 10204 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
8 fveq2 5421 . . . . . . 7  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
98eleq1d 2208 . . . . . 6  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
10 cvgratnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
1110ralrimiva 2505 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
13 elfzelz 9806 . . . . . . . 8  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
1413adantl 275 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
15 0red 7767 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  e.  RR )
161peano2nnd 8735 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  NN )
1716adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  NN )
1817nnred 8733 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
1914zred 9173 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
2016nngt0d 8764 . . . . . . . . 9  |-  ( ph  ->  0  <  ( M  +  1 ) )
2120adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  ( M  +  1 ) )
22 elfzle1 9807 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
2322adantl 275 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
2415, 18, 19, 21, 23ltletrd 8185 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  i )
25 elnnz 9064 . . . . . . 7  |-  ( i  e.  NN  <->  ( i  e.  ZZ  /\  0  < 
i ) )
2614, 24, 25sylanbrc 413 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  NN )
279, 12, 26rspcdva 2794 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  i )  e.  CC )
287, 27fsumcl 11169 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i
)  e.  CC )
2928abscld 10953 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  e.  RR )
3027abscld 10953 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  e.  RR )
317, 30fsumrecl 11170 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  e.  RR )
32 fveq2 5421 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
3332eleq1d 2208 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3433, 11, 1rspcdva 2794 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3534adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  M )  e.  CC )
3635abscld 10953 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  M ) )  e.  RR )
37 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3837adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
392adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
4014, 39zsubcld 9178 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
411adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  NN )
4241nnred 8733 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
4342lep1d 8689 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
4442, 18, 19, 43, 23letrd 7886 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
4519, 42subge0d 8297 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
0  <_  ( i  -  M )  <->  M  <_  i ) )
4644, 45mpbird 166 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( i  -  M
) )
47 elnn0z 9067 . . . . . . 7  |-  ( ( i  -  M )  e.  NN0  <->  ( ( i  -  M )  e.  ZZ  /\  0  <_ 
( i  -  M
) ) )
4840, 46, 47sylanbrc 413 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
4938, 48reexpcld 10441 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
5036, 49remulcld 7796 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
517, 50fsumrecl 11170 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
527, 27fsumabs 11234 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( abs `  ( F `  i )
) )
53 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
5453adantr 274 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  <  1 )
55 cvgratnn.gt0 . . . . . 6  |-  ( ph  ->  0  <  A )
5655adantr 274 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  A )
5710adantlr 468 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
58 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
5958adantlr 468 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
60 eluz2 9332 . . . . . 6  |-  ( i  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  i  e.  ZZ  /\  M  <_ 
i ) )
6139, 14, 44, 60syl3anbrc 1165 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ( ZZ>= `  M )
)
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11294 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
637, 30, 50, 62fsumle 11232 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6429, 31, 51, 52, 63letrd 7886 . 2  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6534abscld 10953 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
6665recnd 7794 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
6738recnd 7794 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
6867, 48expcld 10424 . . 3  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  CC )
697, 66, 68fsummulc2 11217 . 2  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  = 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
7064, 69breqtrrd 3956 1  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790   ^cexp 10292   abscabs 10769   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  cvgratnnlemrate  11299
  Copyright terms: Public domain W3C validator