ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq Unicode version

Theorem cvgratnnlemseq 11295
Description: Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemseq  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M    i, N    ph, i
Allowed substitution hints:    A( i)    M( k)

Proof of Theorem cvgratnnlemseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9361 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9081 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10247 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
54adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq 1
(  +  ,  F
) : NN --> CC )
6 cvgratnn.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
76adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  NN )
85, 7ffvelrnd 5556 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
9 eqid 2139 . . . . . . 7  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
106nnzd 9172 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
1110peano2zd 9176 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
12 fveq2 5421 . . . . . . . . 9  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
1312eleq1d 2208 . . . . . . . 8  |-  ( k  =  x  ->  (
( F `  k
)  e.  CC  <->  ( F `  x )  e.  CC ) )
143ralrimiva 2505 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1514adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
166peano2nnd 8735 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  NN )
17 eluznn 9394 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  NN  /\  x  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  x  e.  NN )
1816, 17sylan 281 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  x  e.  NN )
1913, 15, 18rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  CC )
209, 11, 19serf 10247 . . . . . 6  |-  ( ph  ->  seq ( M  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( M  +  1 ) ) --> CC )
2120adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  seq ( M  +  1 ) (  +  ,  F
) : ( ZZ>= `  ( M  +  1
) ) --> CC )
2211adantr 274 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  e.  ZZ )
23 cvgratnn.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
24 eluzelz 9335 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ZZ )
27 zltp1le 9108 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2810, 25, 27syl2anc 408 . . . . . . 7  |-  ( ph  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2928biimpa 294 . . . . . 6  |-  ( (
ph  /\  M  <  N )  ->  ( M  +  1 )  <_  N )
30 eluz2 9332 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N ) )
3122, 26, 29, 30syl3anbrc 1165 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
3221, 31ffvelrnd 5556 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq ( M  +  1
) (  +  ,  F ) `  N
)  e.  CC )
338, 32pncan2d 8075 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
(  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )  -  (  seq 1 (  +  ,  F ) `  M ) )  =  (  seq ( M  +  1 ) (  +  ,  F ) `
 N ) )
34 addcl 7745 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3534adantl 275 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
36 addass 7750 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
3736adantl 275 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  (
x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
386, 1eleqtrdi 2232 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
3938adantr 274 . . . . 5  |-  ( (
ph  /\  M  <  N )  ->  M  e.  ( ZZ>= `  1 )
)
4014ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  A. k  e.  NN  ( F `  k )  e.  CC )
41 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ( ZZ>= `  1 )
)
4241, 1eleqtrrdi 2233 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
4313, 40, 42rspcdva 2794 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( F `  x )  e.  CC )
4435, 37, 31, 39, 43seq3split 10252 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  (  seq 1 (  +  ,  F ) `  N
)  =  ( (  seq 1 (  +  ,  F ) `  M )  +  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) ) )
4544oveq1d 5789 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( ( (  seq 1
(  +  ,  F
) `  M )  +  (  seq ( M  +  1 ) (  +  ,  F
) `  N )
)  -  (  seq 1 (  +  ,  F ) `  M
) ) )
46 eqidd 2140 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  =  ( F `  i ) )
47 fveq2 5421 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
4847eleq1d 2208 . . . . 5  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
4914ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
5016ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  NN )
51 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  ( ZZ>= `  ( M  +  1 ) ) )
52 eluznn 9394 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
i  e.  NN )
5350, 51, 52syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  i  e.  NN )
5448, 49, 53rspcdva 2794 . . . 4  |-  ( ( ( ph  /\  M  <  N )  /\  i  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  i )  e.  CC )
5546, 31, 54fsum3ser 11166 . . 3  |-  ( (
ph  /\  M  <  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  (  seq ( M  + 
1 ) (  +  ,  F ) `  N ) )
5633, 45, 553eqtr4d 2182 . 2  |-  ( (
ph  /\  M  <  N )  ->  ( (  seq 1 (  +  ,  F ) `  N
)  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
57 simpr 109 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  =  N )
586nnred 8733 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
5958ltp1d 8688 . . . . . . . 8  |-  ( ph  ->  M  <  ( M  +  1 ) )
6059adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  M  <  ( M  +  1 ) )
6157, 60eqbrtrrd 3952 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  N  <  ( M  +  1 ) )
6211adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  ( M  +  1 )  e.  ZZ )
6325adantr 274 . . . . . . 7  |-  ( (
ph  /\  M  =  N )  ->  N  e.  ZZ )
64 fzn 9822 . . . . . . 7  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  ( M  +  1 )  <-> 
( ( M  + 
1 ) ... N
)  =  (/) ) )
6562, 63, 64syl2anc 408 . . . . . 6  |-  ( (
ph  /\  M  =  N )  ->  ( N  <  ( M  + 
1 )  <->  ( ( M  +  1 ) ... N )  =  (/) ) )
6661, 65mpbid 146 . . . . 5  |-  ( (
ph  /\  M  =  N )  ->  (
( M  +  1 ) ... N )  =  (/) )
6766sumeq1d 11135 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  sum_ i  e.  (/)  ( F `
 i ) )
68 sum0 11157 . . . 4  |-  sum_ i  e.  (/)  ( F `  i )  =  0
6967, 68syl6eq 2188 . . 3  |-  ( (
ph  /\  M  =  N )  ->  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i )  =  0 )
704, 6ffvelrnd 5556 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
7170adantr 274 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  e.  CC )
7271subidd 8061 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  0 )
7357fveq2d 5425 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (  seq 1 (  +  ,  F ) `  M
)  =  (  seq 1 (  +  ,  F ) `  N
) )
7473oveq1d 5789 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  M )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  ( (  seq 1 (  +  ,  F ) `
 N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )
7569, 72, 743eqtr2rd 2179 . 2  |-  ( (
ph  /\  M  =  N )  ->  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )
76 eluzle 9338 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
7723, 76syl 14 . . 3  |-  ( ph  ->  M  <_  N )
78 zleloe 9101 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
7910, 25, 78syl2anc 408 . . 3  |-  ( ph  ->  ( M  <_  N  <->  ( M  <  N  \/  M  =  N )
) )
8077, 79mpbid 146 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N
) )
8156, 75, 80mpjaodan 787 1  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   (/)c0 3363   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933   NNcn 8720   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   abscabs 10769   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  cvgratnnlemrate  11299
  Copyright terms: Public domain W3C validator