ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate Unicode version

Theorem cvgratnnlemrate 11299
Description: Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemrate.m  |-  ( ph  ->  M  e.  NN )
cvgratnnlemrate.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemrate  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemrate
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 nnuz 9361 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9081 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10247 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
5 cvgratnnlemrate.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6 cvgratnnlemrate.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluznn 9394 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
85, 6, 7syl2anc 408 . . . . . 6  |-  ( ph  ->  N  e.  NN )
94, 8ffvelrnd 5556 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 N )  e.  CC )
104, 5ffvelrnd 5556 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
119, 10subcld 8073 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  e.  CC )
1211abscld 10953 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  e.  RR )
13 fveq2 5421 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1413eleq1d 2208 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
153ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1614, 15, 5rspcdva 2794 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
1716abscld 10953 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
185nnzd 9172 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918peano2zd 9176 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
20 eluzelz 9335 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
216, 20syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2219, 21fzfigd 10204 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
23 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
2423adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
255nnred 8733 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2625adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
27 peano2re 7898 . . . . . . . . 9  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
2826, 27syl 14 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
29 elfzelz 9806 . . . . . . . . . 10  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
3029adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
3130zred 9173 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
3226lep1d 8689 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
33 elfzle1 9807 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
3433adantl 275 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
3526, 28, 31, 32, 34letrd 7886 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
36 znn0sub 9119 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  i  e.  ZZ )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3718, 29, 36syl2an 287 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3835, 37mpbid 146 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
3924, 38reexpcld 10441 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
4022, 39fsumrecl 11170 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  e.  RR )
4117, 40remulcld 7796 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  e.  RR )
42 cvgratnn.4 . . . . . . . . . . 11  |-  ( ph  ->  A  <  1 )
43 cvgratnn.gt0 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  A )
4423, 43elrpd 9481 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
4544reclt1d 9497 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
4642, 45mpbid 146 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( 1  /  A ) )
47 1re 7765 . . . . . . . . . . 11  |-  1  e.  RR
4844rprecred 9495 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
49 difrp 9480 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  < 
( 1  /  A
)  <->  ( ( 1  /  A )  - 
1 )  e.  RR+ ) )
5047, 48, 49sylancr 410 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  (
1  /  A )  <-> 
( ( 1  /  A )  -  1 )  e.  RR+ )
)
5146, 50mpbid 146 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
5251rpreccld 9494 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
5352, 44rpdivcld 9501 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
54 fveq2 5421 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
5554eleq1d 2208 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
56 1nn 8731 . . . . . . . . . . 11  |-  1  e.  NN
5756a1i 9 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN )
5855, 15, 57rspcdva 2794 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  CC )
5958abscld 10953 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
6058absge0d 10956 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
6159, 60ge0p1rpd 9514 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR+ )
6253, 61rpmulcld 9500 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR+ )
6362rpred 9483 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
6463, 5nndivred 8770 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
65 1red 7781 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6665, 23resubcld 8143 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
6723, 65posdifd 8294 . . . . . . . 8  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
6842, 67mpbid 146 . . . . . . 7  |-  ( ph  ->  0  <  ( 1  -  A ) )
6966, 68elrpd 9481 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
7044, 69rpdivcld 9501 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR+ )
7170rpred 9483 . . . 4  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR )
7264, 71remulcld 7796 . . 3  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) )  e.  RR )
73 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11295 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
7574fveq2d 5425 . . . 4  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  =  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) ) )
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11296 . . . 4  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
7775, 76eqbrtrd 3950 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) ) )
7816absge0d 10956 . . . 4  |-  ( ph  ->  0  <_  ( abs `  ( F `  M
) ) )
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11298 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
8044adantr 274 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR+ )
8138nn0zd 9171 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
8280, 81rpexpcld 10448 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR+ )
8382rpge0d 9487 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( A ^ (
i  -  M ) ) )
8422, 39, 83fsumge0 11228 . . . 4  |-  ( ph  ->  0  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11297 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8699 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8712, 41, 72, 77, 86lelttrd 7887 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8863recnd 7794 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  CC )
8971recnd 7794 . . 3  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
905nncnd 8734 . . 3  |-  ( ph  ->  M  e.  CC )
915nnap0d 8766 . . 3  |-  ( ph  ->  M #  0 )
9288, 89, 90, 91div23apd 8588 . 2  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M )  =  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
9387, 92breqtrrd 3956 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801    - cmin 7933    / cdiv 8432   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441   ...cfz 9790    seqcseq 10218   ^cexp 10292   abscabs 10769   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  cvgratnn  11300
  Copyright terms: Public domain W3C validator