ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt Unicode version

Theorem effsumlt 11398
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
effsumlt.2  |-  ( ph  ->  A  e.  RR+ )
effsumlt.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
effsumlt  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    N( n)

Proof of Theorem effsumlt
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9360 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9066 . . . . 5  |-  ( ph  ->  0  e.  ZZ )
3 effsumlt.2 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
43rpcnd 9485 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
5 effsumlt.1 . . . . . . . 8  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
65eftvalcn 11363 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
74, 6sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
83rpred 9483 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
9 reeftcl 11361 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  RR )
108, 9sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR )
117, 10eqeltrd 2216 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
121, 2, 11serfre 10248 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F ) : NN0 --> RR )
13 effsumlt.3 . . . 4  |-  ( ph  ->  N  e.  NN0 )
1412, 13ffvelrnd 5556 . . 3  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  e.  RR )
15 eqid 2139 . . . 4  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
16 peano2nn0 9017 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
1713, 16syl 14 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
18 eqidd 2140 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
19 nn0z 9074 . . . . . . 7  |-  ( k  e.  NN0  ->  k  e.  ZZ )
20 rpexpcl 10312 . . . . . . 7  |-  ( ( A  e.  RR+  /\  k  e.  ZZ )  ->  ( A ^ k )  e.  RR+ )
213, 19, 20syl2an 287 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  RR+ )
22 faccl 10481 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2322adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
2423nnrpd 9482 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
2521, 24rpdivcld 9501 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  RR+ )
267, 25eqeltrd 2216 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
275efcllem 11365 . . . . 5  |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
284, 27syl 14 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
291, 15, 17, 18, 26, 28isumrpcl 11263 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k )  e.  RR+ )
3014, 29ltaddrpd 9517 . 2  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( (  seq 0
(  +  ,  F
) `  N )  +  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
315efval2 11371 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  = 
sum_ k  e.  NN0  ( F `  k ) )
324, 31syl 14 . . 3  |-  ( ph  ->  ( exp `  A
)  =  sum_ k  e.  NN0  ( F `  k ) )
3311recnd 7794 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
341, 15, 17, 18, 33, 28isumsplit 11260 . . 3  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
3513nn0cnd 9032 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
36 ax-1cn 7713 . . . . . . . 8  |-  1  e.  CC
37 pncan 7968 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
3835, 36, 37sylancl 409 . . . . . . 7  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
3938oveq2d 5790 . . . . . 6  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
4039sumeq1d 11135 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... N
) ( F `  k ) )
41 eqidd 2140 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  =  ( F `  k ) )
4213, 1eleqtrdi 2232 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
43 elnn0uz 9363 . . . . . . 7  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4443, 33sylan2br 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( F `  k )  e.  CC )
4541, 42, 44fsum3ser 11166 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4640, 45eqtrd 2172 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  =  (  seq 0 (  +  ,  F ) `  N
) )
4746oveq1d 5789 . . 3  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( F `  k
) )  =  ( (  seq 0 (  +  ,  F ) `
 N )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( F `  k ) ) )
4832, 34, 473eqtrd 2176 . 2  |-  ( ph  ->  ( exp `  A
)  =  ( (  seq 0 (  +  ,  F ) `  N )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( F `
 k ) ) )
4930, 48breqtrrd 3956 1  |-  ( ph  ->  (  seq 0 (  +  ,  F ) `
 N )  < 
( exp `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929    |-> cmpt 3989   dom cdm 4539   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    - cmin 7933    / cdiv 8432   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441   ...cfz 9790    seqcseq 10218   ^cexp 10292   !cfa 10471    ~~> cli 11047   sum_csu 11122   expce 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354
This theorem is referenced by:  efgt1p2  11401  efgt1p  11402
  Copyright terms: Public domain W3C validator